Changes for page How to do with Linear Calibration?
Last modified by Mengting Qiu on 2024/09/02 17:23
From version 7.1
edited by Mengting Qiu
on 2024/09/02 14:14
on 2024/09/02 14:14
Change comment:
There is no comment for this version
To version 28.1
edited by Mengting Qiu
on 2024/09/02 17:23
on 2024/09/02 17:23
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- image-20240902160516-1.png
- image-20240902160755-2.png
- image-20240902161202-3.png
- image-20240902161711-4.png
- image-20240902161857-5.png
- image-20240902163114-6.png
- image-20240902163527-7.png
- image-20240902164104-8.png
- image-20240902164156-9.png
- image-20240902164500-10.png
- image-20240902164503-11.png
- image-20240902164910-12.png
- image-20240902171200-13.png
- image-20240902171417-14.png
- image-20240902171627-15.png
- image-20240902171909-16.png
Details
- Page properties
-
- Content
-
... ... @@ -15,6 +15,10 @@ 15 15 16 16 In some case, the measurement and real value are in different range, but they are both linear, we have to calculate the real value with the measurement we can use a simple Linear Calibration. 17 17 18 + 19 +== 2.1 Solve the linear relationship manually == 20 + 21 + 18 18 (% style="color:blue" %)**Example:**(%%) we have a water level probe, the measurement range is 0 ~~ 10 meters, and the output is 4~~20mA, this means the when the water level is 0 meter, the output is 4mA, when the water level is 10 meters, the output is 20mA. 19 19 20 20 We can make a coordinate axis as below: ... ... @@ -45,17 +45,102 @@ 45 45 When x=8 mA, y=2.5 meters 46 46 47 47 48 -A more general formular: 52 +**A more general formular:** 49 49 50 -(% style="color: #4f81bd" %)**Y=(y2-y1)/(x2-x1)* (x-x1) + y1**54 +(% style="color:blue" %)**Y=(y2-y1)/(x2-x1)* (x-x1) + y1** 51 51 52 52 53 53 Calibration Curve Schematic: 54 54 55 -[[image:image-20240902114541-1.png||height=" 479" width="851"]]59 +[[image:image-20240902114541-1.png||height="336" width="596"]] 56 56 57 57 62 +== 2.2 Performing linear calibration curves in Excel == 58 58 64 + 65 +In addition, we can also perform calibration curves in Excel and directly obtain linear equations by statistics of X and Y values. 66 + 67 +Citing the same example above, (% style="color:#4f81bd" %)**X**(%%) and (% style="color:#4f81bd" %)**Y**(%%). 68 + 69 + 70 +=== Step 1: Create chart === 71 + 72 + 73 +A simple spreadsheet with two columns: X values and Y values. 74 + 75 +[[image:image-20240902160516-1.png||height="404" width="561"]] 76 + 77 +* Start by selecting the data you want to plot in the chart. 78 +* First, select the X-Value column cell, then press the Ctrl key, and finally click the Y-value column cell. 79 + 80 +[[image:image-20240902160755-2.png||height="394" width="562"]] 81 + 82 +* Go to the "(% style="color:#4f81bd" %)**Insert**(%%)" TAB, navigate to the "(% style="color:#4f81bd" %)**Chart**(%%)" menu, and then select the first option in the "(% style="color:#4f81bd" %)**Scatter**(%%)" drop-down list. 83 +* A chart will appear with the data points in the two columns. 84 + 85 +[[image:image-20240902161202-3.png||height="453" width="824"]] 86 + 87 +* Right-click on one of the blue dots and select the (% style="color:#4f81bd" %)**"Add Trendline" **(%%)option. 88 + 89 +[[image:image-20240902161711-4.png||height="490" width="681"]] 90 + 91 +* A straight line will appear on the chart. 92 + 93 +On the right side of the screen, the Format Trendline menu will appear. Check the boxes next to (% style="color:#4f81bd" %)**"Show formulas on chart" **(%%)and (% style="color:#4f81bd" %)**"Show R-squared values on chart"**(%%). 94 + 95 +The R-squared value is a statistic that tells you how well the line fits the data. The best R-squared value is **1.000**, which means that every data point touches the line. 96 + 97 +Because the ideal data example is used, the R-squared value in this case is 1. 98 + 99 +As the difference between the data points and the line increases, the R-squared value decreases, with **0.000** being the lowest possible value. 100 + 101 +The equation is of the form (% style="color:blue" %)**"y = kx + b"**(%%),(% style="color:blue" %)** **(%%)where (% style="color:blue" %)**k**(%%) is the slope and (% style="color:blue" %)**b**(%%) is the y-intercept of the line. 102 + 103 +[[image:image-20240902161857-5.png||height="559" width="1103"]] 104 + 105 +* Calibration is complete. The user can customize the chart by editing the title and adding the axis title. 106 + 107 +[[image:image-20240902163527-7.png||height="349" width="656"]] 108 + 109 + 110 +=== Step 2: Calculate the line equation and R-squared statistic === 111 + 112 +* Write the (% style="color:#4f81bd" %)**Slope formula**(%%) in the formula bar according to the original x and y values statistics table. 113 + 114 +[[image:image-20240902164104-8.png||height="503" width="492"]] 115 + 116 +* Write (% style="color:#4f81bd" %)**Intercept formula**(%%) in the formula bar according to the original x and y value statistics table. 117 + 118 +[[image:image-20240902164156-9.png||height="525" width="488"]] 119 + 120 +* Write (% style="color:#4f81bd" %)**CORREL's squared formula**(%%) in the formula bar based on the original x and y statistics table. 121 + 122 +The CORREL function returns "R", so we have to square it to compute "R squared". 123 + 124 +[[image:image-20240902164503-11.png||height="523" width="743"]] 125 + 126 +* These values match those shown in the chart. 127 + 128 +[[image:image-20240902164910-12.png||height="420" width="897"]] 129 + 130 + 131 +=== Step 3: Set up formulas to quickly calculate X and Y values. === 132 + 133 + 134 +* The equation of the best fitting line is "Y-value = SLOPE * x-value + INTERCEPT", so the solution of "y-value" is obtained by multiplying X value and SLOPE, and then INTERCEPT is added. 135 + 136 +A simple formula table for calculating Y value automatically with input X value is obtained. 137 + 138 +[[image:image-20240902171627-15.png||height="440" width="754"]] 139 + 140 + 141 +* The X value based on the Y value is solved by subtracting INTERCEPT from the Y value and dividing the result by SLOPE: "x-value = (y-value-intercept)/SLOPE". 142 + 143 +A simple formula table for automatically calculating X value based on the input Y value is obtained. 144 + 145 +[[image:image-20240902171909-16.png||height="604" width="756"]] 146 + 147 + 59 59 = 3. Case examples = 60 60 61 61 ... ... @@ -79,9 +79,12 @@ 79 79 80 80 (% style="color:red" %)**Notice for Linear Calibrate:** 81 81 82 -1. k(Slope) is very important, We can measure more points to calculate the most accuracy k. 83 -1. Make sure the mapping is linear, and choose two calibrate points as "far" as possible. 171 +(% style="color:red" %)**1. k(Slope) is very important, We can measure more points to calculate the most accuracy k. ** 84 84 173 +(% style="color:red" %)**2. Make sure the mapping is linear, and choose two calibrate points as "far" as possible.** 85 85 86 86 176 + 177 + 178 + 87 87
- image-20240902160516-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.2 KB - Content
- image-20240902160755-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +29.0 KB - Content
- image-20240902161202-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.0 KB - Content
- image-20240902161711-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.9 KB - Content
- image-20240902161857-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +48.1 KB - Content
- image-20240902163114-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.7 KB - Content
- image-20240902163527-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +25.8 KB - Content
- image-20240902164104-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20240902164156-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.4 KB - Content
- image-20240902164500-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.4 KB - Content
- image-20240902164503-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.4 KB - Content
- image-20240902164910-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +33.2 KB - Content
- image-20240902171200-13.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.5 KB - Content
- image-20240902171417-14.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.4 KB - Content
- image-20240902171627-15.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.9 KB - Content
- image-20240902171909-16.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.6 KB - Content