Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106
107 == 1.4 Applications ==
108
109 * Smart Buildings & Home Automation
110 * Logistics and Supply Chain Management
111 * Smart Metering
112 * Smart Agriculture
113 * Smart Cities
114 * Smart Factory
115
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125 (((
126 (((
127 v1.2: Add External Interrupt Pin.
128 )))
129
130 (((
131 v1.0: Release
132 )))
133
134
135 )))
136 )))
137
138 = 2. Power ON Device =
139
140 (((
141 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
142
143 * Power Source VIN to RS485-LN VIN+
144 * Power Source GND to RS485-LN VIN-
145
146 (((
147 Once there is power, the RS485-LN will be on.
148 )))
149
150 [[image:1653268091319-405.png]]
151
152
153 )))
154
155 = 3. Operation Mode =
156
157 == 3.1 How it works? ==
158
159 (((
160 (((
161 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
162 )))
163
164
165 )))
166
167 == 3.2 Example to join LoRaWAN network ==
168
169 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
170
171 [[image:1653268155545-638.png||height="334" width="724"]]
172
173
174 (((
175 (((
176 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
177 )))
178
179 (((
180 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
181 )))
182
183 [[image:1653268227651-549.png||height="592" width="720"]]
184
185 (((
186 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
187 )))
188
189 (((
190 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
191 )))
192
193 (((
194 Each RS485-LN is shipped with a sticker with unique device EUI:
195 )))
196 )))
197
198 [[image:1652953462722-299.png]]
199
200 (((
201 (((
202 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
203 )))
204
205 (((
206 Add APP EUI in the application.
207 )))
208 )))
209
210 [[image:image-20220519174512-1.png]]
211
212 [[image:image-20220519174512-2.png||height="323" width="720"]]
213
214 [[image:image-20220519174512-3.png||height="556" width="724"]]
215
216 [[image:image-20220519174512-4.png]]
217
218 You can also choose to create the device manually.
219
220 [[image:1652953542269-423.png||height="710" width="723"]]
221
222 Add APP KEY and DEV EUI
223
224 [[image:1652953553383-907.png||height="514" width="724"]]
225
226
227 (((
228 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
229 )))
230
231 [[image:1652953568895-172.png||height="232" width="724"]]
232
233
234 == 3.3 Configure Commands to read data ==
235
236 (((
237 (((
238 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
239 )))
240
241 (((
242 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
243
244
245 )))
246 )))
247
248 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
249
250 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
251
252 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
253 |=(% style="width: 110px;" %)(((
254 **AT Commands**
255 )))|=(% style="width: 190px;" %)(((
256 **Description**
257 )))|=(% style="width: 190px;" %)(((
258 **Example**
259 )))
260 |(% style="width:110px" %)(((
261 AT+BAUDR
262 )))|(% style="width:190px" %)(((
263 Set the baud rate (for RS485 connection). Default Value is: 9600.
264 )))|(% style="width:190px" %)(((
265 (((
266 AT+BAUDR=9600
267 )))
268
269 (((
270 Options: (1200,2400,4800,14400,19200,115200)
271 )))
272 )))
273 |(% style="width:110px" %)(((
274 AT+PARITY
275 )))|(% style="width:190px" %)(((
276 Set UART parity (for RS485 connection)
277 )))|(% style="width:190px" %)(((
278 (((
279 AT+PARITY=0
280 )))
281
282 (((
283 Option: 0: no parity, 1: odd parity, 2: even parity
284 )))
285 )))
286 |(% style="width:110px" %)(((
287 AT+STOPBIT
288 )))|(% style="width:190px" %)(((
289 (((
290 Set serial stopbit (for RS485 connection)
291 )))
292
293 (((
294
295 )))
296 )))|(% style="width:190px" %)(((
297 (((
298 AT+STOPBIT=0 for 1bit
299 )))
300
301 (((
302 AT+STOPBIT=1 for 1.5 bit
303 )))
304
305 (((
306 AT+STOPBIT=2 for 2 bits
307 )))
308 )))
309
310
311
312 === 3.3.2 Configure sensors ===
313
314 (((
315 (((
316 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
317 )))
318 )))
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
321 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
322 |AT+CFGDEV|(% style="width:110px" %)(((
323 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
324
325 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
326
327 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
328 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
329
330
331
332 === 3.3.3 Configure read commands for each sampling ===
333
334 (((
335 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
336
337 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
338
339 This section describes how to achieve above goals.
340
341 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
342
343
344 **Each RS485 commands include two parts:**
345
346 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
347
348 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
349
350 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
351
352
353 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
354
355
356 Below are examples for the how above AT Commands works.
357
358
359 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
360
361 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
362 |(% style="width:496px" %)(((
363 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
364
365 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
366
367 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
368 )))
369
370 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
371
372 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
373
374
375 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
376
377 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
378 |(% style="width:510px" %)(((
379 **AT+DATACUTx=a,b,c**
380
381 * **a: length for the return of AT+COMMAND**
382 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
383 * **c: define the position for valid value.  **
384 )))
385
386 **Examples:**
387
388 * Grab bytes:
389
390 [[image:image-20220602153621-1.png]]
391
392
393 * Grab a section.
394
395 [[image:image-20220602153621-2.png]]
396
397
398 * Grab different sections.
399
400 [[image:image-20220602153621-3.png]]
401
402
403 )))
404
405 === 3.3.4 Compose the uplink payload ===
406
407 (((
408 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
409
410
411 )))
412
413 (((
414 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
415
416
417 )))
418
419 (((
420 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
421 )))
422
423 (((
424 Final Payload is
425 )))
426
427 (((
428 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
429 )))
430
431 (((
432 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
433 )))
434
435 [[image:1653269759169-150.png||height="513" width="716"]]
436
437
438 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
439
440
441 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
442
443 Final Payload is
444
445 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
446
447
448 1. PAYVER: Defined by AT+PAYVER
449 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
450 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
451 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
452
453 [[image:image-20220602155039-4.png]]
454
455
456 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
457
458 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
459
460 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
461
462 DATA3=the rest of Valid value of RETURN10= **30**
463
464
465 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
466
467 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
468
469 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
470
471 * For US915 band, max 11 bytes for each uplink.
472
473 ~* For all other bands: max 51 bytes for each uplink.
474
475
476 Below are the uplink payloads:
477
478 [[image:1654157178836-407.png]]
479
480
481 === 3.3.5 Uplink on demand ===
482
483 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
484
485 Downlink control command:
486
487 **0x08 command**: Poll an uplink with current command set in RS485-LN.
488
489 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
490
491
492
493 === 3.3.6 Uplink on Interrupt ===
494
495 RS485-LN support external Interrupt uplink since hardware v1.2 release.
496
497 [[image:1654157342174-798.png]]
498
499 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
500
501
502 == 3.4 Uplink Payload ==
503
504 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
505 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
506 |Value|(% style="width:120px" %)(((
507 Battery(mV)
508
509 &
510
511 Interrupt _Flag
512 )))|(% style="width:116px" %)(((
513 PAYLOAD_VER
514
515
516 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
517
518 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
519
520
521 == 3.5 Configure RS485-BL via AT or Downlink ==
522
523 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
524
525 There are two kinds of Commands:
526
527 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
528
529 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
530
531 === 3.5.1 Common Commands ===
532
533 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
534
535
536 === 3.5.2 Sensor related commands ===
537
538 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
539
540 [[image:image-20220602163333-5.png||height="263" width="1160"]]
541
542 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
543
544
545 === 3.5.3 Sensor related commands ===
546
547
548
549 ==== **RS485 Debug Command** ====
550
551 This command is used to configure the RS485 devices; they won’t be used during sampling.
552
553 * **AT Command**
554
555 (% class="box infomessage" %)
556 (((
557 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
558 )))
559
560 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
561
562 * **Downlink Payload**
563
564 Format: A8 MM NN XX XX XX XX YY
565
566 Where:
567
568 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
569 * NN: The length of RS485 command
570 * XX XX XX XX: RS485 command total NN bytes
571 * YY: How many bytes will be uplink from the return of this RS485 command,
572 ** if YY=0, RS485-LN will execute the downlink command without uplink;
573 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
574 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
575
576 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
577
578 To connect a Modbus Alarm with below commands.
579
580 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
581
582 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
583
584 So if user want to use downlink command to control to RS485 Alarm, he can use:
585
586 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
587
588 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
589
590 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
591
592
593 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
594
595 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
596
597
598 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
599
600 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
601
602 [[image:1654159460680-153.png]]
603
604
605
606 ==== **Set Payload version** ====
607
608 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
609
610 * **AT Command:**
611
612 (% class="box infomessage" %)
613 (((
614 **AT+PAYVER: Set PAYVER field = 1**
615 )))
616
617 * **Downlink Payload:**
618
619 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
620
621 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
622
623
624
625 ==== **Set RS485 Sampling Commands** ====
626
627 AT+COMMANDx or AT+DATACUTx
628
629 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
630
631
632 * **AT Command:**
633
634 (% class="box infomessage" %)
635 (((
636 **AT+COMMANDx: Configure RS485 read command to sensor.**
637 )))
638
639 (% class="box infomessage" %)
640 (((
641 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
642 )))
643
644
645 * **Downlink Payload:**
646
647 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
648
649 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
650
651 Format: AF MM NN LL XX XX XX XX YY
652
653 Where:
654
655 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
656 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
657 * LL:  The length of AT+COMMAND or AT+DATACUT command
658 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
659 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
660
661 **Example:**
662
663 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
664
665 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
666
667 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
668
669
670
671 ==== **Fast command to handle MODBUS device** ====
672
673 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
674
675 This command is valid since v1.3 firmware version
676
677 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
678
679
680 **Example:**
681
682 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
683 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
684 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
685
686 [[image:image-20220602165351-6.png]]
687
688 [[image:image-20220602165351-7.png]]
689
690
691
692 ==== **RS485 command timeout** ====
693
694 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
695
696 Default value: 0, range:  0 ~~ 65 seconds
697
698 * **AT Command:**
699
700 (% class="box infomessage" %)
701 (((
702 **AT+CMDDLaa=hex(bb cc)*1000**
703 )))
704
705 **Example:**
706
707 **AT+CMDDL1=1000** to send the open time to 1000ms
708
709
710 * **Downlink Payload:**
711
712 **0x AA aa bb cc**
713
714 Same as: AT+CMDDLaa=hex(bb cc)*1000
715
716 **Example:**
717
718 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
719
720
721
722 ==== **Uplink payload mode** ====
723
724 Define to use one uplink or multiple uplinks for the sampling.
725
726 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
727
728 * **AT Command:**
729
730 (% class="box infomessage" %)
731 (((
732 **AT+DATAUP=0**
733 )))
734
735 (% class="box infomessage" %)
736 (((
737 **AT+DATAUP=1**
738 )))
739
740
741 * **Downlink Payload:**
742
743 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
744
745 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
746
747
748
749 ==== **Manually trigger an Uplink** ====
750
751 Ask device to send an uplink immediately.
752
753 * **AT Command:**
754
755 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
756
757
758 * **Downlink Payload:**
759
760 **0x08 FF**, RS485-LN will immediately send an uplink.
761
762
763
764 ==== **Clear RS485 Command** ====
765
766 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
767
768 * **AT Command:**
769
770 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
771
772 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
773
774 Example screen shot after clear all RS485 commands. 
775
776
777 The uplink screen shot is:
778
779 [[image:1654160691922-496.png]]
780
781
782 * **Downlink Payload:**
783
784 **0x09 aa bb** same as AT+CMDEAR=aa,bb
785
786
787
788 ==== **Set Serial Communication Parameters** ====
789
790 Set the Rs485 serial communication parameters:
791
792 * **AT Command:**
793
794 Set Baud Rate:
795
796 (% class="box infomessage" %)
797 (((
798 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
799 )))
800
801 Set UART Parity
802
803 (% class="box infomessage" %)
804 (((
805 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
806 )))
807
808 Set STOPBIT
809
810 (% class="box infomessage" %)
811 (((
812 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
813 )))
814
815
816 * **Downlink Payload:**
817
818 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
819
820 **Example:**
821
822 * A7 01 00 60   same as AT+BAUDR=9600
823 * A7 01 04 80  same as AT+BAUDR=115200
824
825 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
826
827 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
828
829
830 == 3.6 Listening mode for RS485 network ==
831
832 This feature support since firmware v1.4
833
834 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
835
836 [[image:image-20220602171200-8.png||height="567" width="1007"]]
837
838 To enable the listening mode, use can run the command AT+RXMODE.
839
840
841 (% border="1" style="background-color:#ffffcc; width:500px" %)
842 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
843 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
844 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
845 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
846 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
847
848 **Downlink Command:**
849
850 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
851
852
853 **Example**:
854
855 The RS485-LN is set to AT+RXMODE=2,1000
856
857 There is a two Modbus commands in the RS485 network as below:
858
859 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
860
861 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
862
863 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
864
865 [[image:image-20220602171200-9.png]]
866
867
868 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
869
870
871 == 3.7 Buttons ==
872
873
874 (% border="1" style="background-color:#f7faff; width:500px" %)
875 |=**Button**|=(% style="width: 1420px;" %)**Feature**
876 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
877 |**RST**|(% style="width:1420px" %)Reboot RS485
878 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
879
880 == 3.8 LEDs ==
881
882 (% border="1" style="background-color:#f7faff; width:500px" %)
883 |=**LEDs**|=**Feature**
884 |**PWR**|Always on if there is power
885 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
886
887 = 4. Case Study =
888
889 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
890
891
892 = 5. Use AT Command =
893
894 == 5.1 Access AT Command ==
895
896 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
897
898 [[image:1654162355560-817.png]]
899
900
901 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
902
903 [[image:1654162368066-342.png]]
904
905
906 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
907
908
909 == 5.2 Common AT Command Sequence ==
910
911 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
912
913 If device has not joined network yet:
914
915 (% class="box infomessage" %)
916 (((
917 **AT+FDR**
918 )))
919
920 (% class="box infomessage" %)
921 (((
922 **AT+NJM=0**
923 )))
924
925 (% class="box infomessage" %)
926 (((
927 **ATZ**
928 )))
929
930
931 If device already joined network:
932
933 (% class="box infomessage" %)
934 (((
935 **AT+NJM=0**
936 )))
937
938 (% class="box infomessage" %)
939 (((
940 **ATZ**
941 )))
942
943
944 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
945
946
947 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
948
949 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
950
951 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
952
953 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
954
955 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
956
957 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
958
959 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
960
961 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
962
963 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
964
965 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
966
967
968 (% style="color:red" %)**Note:**
969
970 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
971 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
972 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
973 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
974
975 [[image:1654162478620-421.png]]
976
977
978 = 6. FAQ =
979
980 == 6.1 How to upgrade the image? ==
981
982 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
983
984 * Support new features
985 * For bug fix
986 * Change LoRaWAN bands.
987
988 Below shows the hardware connection for how to upload an image to RS485-LN:
989
990 [[image:1654162535040-878.png]]
991
992 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
993
994 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
995
996 **Step3: **Open flashloader; choose the correct COM port to update.
997
998 (((
999 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1000 )))
1001
1002
1003 [[image:image-20220602175818-12.png]]
1004
1005
1006 [[image:image-20220602175848-13.png]]
1007
1008
1009 [[image:image-20220602175912-14.png]]
1010
1011
1012 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1013
1014 [[image:image-20220602175638-10.png]]
1015
1016
1017 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1018
1019 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1020
1021
1022 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1023
1024 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1025
1026
1027 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1028
1029 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1030
1031 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1032
1033
1034 = 7. Trouble Shooting =
1035
1036 == 7.1 Downlink doesn’t work, how to solve it? ==
1037
1038 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1039
1040
1041 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1042
1043 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1044
1045
1046 = 8. Order Info =
1047
1048 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1049
1050 (% style="color:blue" %)**XXX:**
1051
1052 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1053 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1054 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1055 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1056 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1057 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1058 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1059 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1060 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1061 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1062
1063
1064 = 9.Packing Info =
1065
1066
1067 **Package Includes**:
1068
1069 * RS485-LN x 1
1070 * Stick Antenna for LoRa RF part x 1
1071 * Program cable x 1
1072
1073 **Dimension and weight**:
1074
1075 * Device Size: 13.5 x 7 x 3 cm
1076 * Device Weight: 105g
1077 * Package Size / pcs : 14.5 x 8 x 5 cm
1078 * Weight / pcs : 170g
1079
1080
1081 = 10. FCC Caution for RS485LN-US915 =
1082
1083 (((
1084 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1085 )))
1086
1087 (((
1088 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1089 )))
1090
1091 (((
1092
1093 )))
1094
1095 (((
1096 **IMPORTANT NOTE:**
1097 )))
1098
1099 (((
1100 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1101 )))
1102
1103 (((
1104 —Reorient or relocate the receiving antenna.
1105 )))
1106
1107 (((
1108 —Increase the separation between the equipment and receiver.
1109 )))
1110
1111 (((
1112 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1113 )))
1114
1115 (((
1116 —Consult the dealer or an experienced radio/TV technician for help.
1117 )))
1118
1119 (((
1120
1121 )))
1122
1123 (((
1124 **FCC Radiation Exposure Statement:**
1125 )))
1126
1127 (((
1128 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1129 )))
1130
1131
1132 = 11. Support =
1133
1134 * (((
1135 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1136 )))
1137 * (((
1138 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1139 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0