Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79 == 1.3 Features ==
80
81 * LoRaWAN Class A & Class C protocol (default Class C)
82 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
83 * AT Commands to change parameters
84 * Remote configure parameters via LoRa Downlink
85 * Firmware upgradable via program port
86 * Support multiply RS485 devices by flexible rules
87 * Support Modbus protocol
88 * Support Interrupt uplink (Since hardware version v1.2)
89
90 == 1.4 Applications ==
91
92 * Smart Buildings & Home Automation
93 * Logistics and Supply Chain Management
94 * Smart Metering
95 * Smart Agriculture
96 * Smart Cities
97 * Smart Factory
98
99 == 1.5 Firmware Change log ==
100
101 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
102
103
104 == 1.6 Hardware Change log ==
105
106 (((
107 (((
108 v1.2: Add External Interrupt Pin.
109
110 v1.0: Release
111
112
113 )))
114 )))
115
116 = 2. Power ON Device =
117
118 (((
119 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
120
121 * Power Source VIN to RS485-LN VIN+
122 * Power Source GND to RS485-LN VIN-
123
124 (((
125 Once there is power, the RS485-LN will be on.
126 )))
127
128 [[image:1653268091319-405.png]]
129
130
131 )))
132
133 = 3. Operation Mode =
134
135 == 3.1 How it works? ==
136
137 (((
138 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139
140
141 )))
142
143 == 3.2 Example to join LoRaWAN network ==
144
145 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
146
147 [[image:1653268155545-638.png||height="334" width="724"]]
148
149
150 (((
151 (((
152 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153 )))
154
155 (((
156 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 )))
158
159 [[image:1653268227651-549.png||height="592" width="720"]]
160
161 (((
162 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
163 )))
164
165 (((
166 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
167 )))
168
169 (((
170 Each RS485-LN is shipped with a sticker with unique device EUI:
171 )))
172 )))
173
174 [[image:1652953462722-299.png]]
175
176 (((
177 (((
178 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
179 )))
180
181 (((
182 Add APP EUI in the application.
183 )))
184 )))
185
186 [[image:image-20220519174512-1.png]]
187
188 [[image:image-20220519174512-2.png||height="323" width="720"]]
189
190 [[image:image-20220519174512-3.png||height="556" width="724"]]
191
192 [[image:image-20220519174512-4.png]]
193
194 You can also choose to create the device manually.
195
196 [[image:1652953542269-423.png||height="710" width="723"]]
197
198 Add APP KEY and DEV EUI
199
200 [[image:1652953553383-907.png||height="514" width="724"]]
201
202
203 (((
204 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
205 )))
206
207 [[image:1652953568895-172.png||height="232" width="724"]]
208
209
210 == 3.3 Configure Commands to read data ==
211
212 (((
213 (((
214 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
215 )))
216
217 (((
218 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219
220
221 )))
222 )))
223
224 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
225
226 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
227
228 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 |(% style="width:128px" %)(((
230 **AT Commands**
231 )))|(% style="width:305px" %)(((
232 **Description**
233 )))|(% style="width:346px" %)(((
234 **Example**
235 )))
236 |(% style="width:128px" %)(((
237 AT+BAUDR
238 )))|(% style="width:305px" %)(((
239 Set the baud rate (for RS485 connection). Default Value is: 9600.
240 )))|(% style="width:346px" %)(((
241 (((
242 AT+BAUDR=9600
243 )))
244
245 (((
246 Options: (1200,2400,4800,14400,19200,115200)
247 )))
248 )))
249 |(% style="width:128px" %)(((
250 AT+PARITY
251 )))|(% style="width:305px" %)(((
252 Set UART parity (for RS485 connection)
253 )))|(% style="width:346px" %)(((
254 (((
255 AT+PARITY=0
256 )))
257
258 (((
259 Option: 0: no parity, 1: odd parity, 2: even parity
260 )))
261 )))
262 |(% style="width:128px" %)(((
263 AT+STOPBIT
264 )))|(% style="width:305px" %)(((
265 (((
266 Set serial stopbit (for RS485 connection)
267 )))
268
269 (((
270
271 )))
272 )))|(% style="width:346px" %)(((
273 (((
274 AT+STOPBIT=0 for 1bit
275 )))
276
277 (((
278 AT+STOPBIT=1 for 1.5 bit
279 )))
280
281 (((
282 AT+STOPBIT=2 for 2 bits
283 )))
284 )))
285
286 === 3.3.2 Configure sensors ===
287
288 (((
289 (((
290 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
291 )))
292 )))
293
294 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
295 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
296 |AT+CFGDEV|(% style="width:418px" %)(((
297 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
298
299 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
300
301 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
302 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
303
304 === 3.3.3 Configure read commands for each sampling ===
305
306 (((
307 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
308
309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
310
311 This section describes how to achieve above goals.
312
313 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
314
315
316 **Each RS485 commands include two parts:**
317
318 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
319
320 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
321
322 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
323
324
325 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
326
327
328 Below are examples for the how above AT Commands works.
329
330
331 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332
333 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 |(% style="width:496px" %)(((
335 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
336
337 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
338
339 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
340 )))
341
342 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
343
344 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
345
346
347 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
348
349 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 |(% style="width:722px" %)(((
351 **AT+DATACUTx=a,b,c**
352
353 * **a: length for the return of AT+COMMAND**
354 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
355 * **c: define the position for valid value.  **
356 )))
357
358 **Examples:**
359
360 * Grab bytes:
361
362 [[image:image-20220602153621-1.png]]
363
364
365 * Grab a section.
366
367 [[image:image-20220602153621-2.png]]
368
369
370 * Grab different sections.
371
372 [[image:image-20220602153621-3.png]]
373
374
375 )))
376
377 === 3.3.4 Compose the uplink payload ===
378
379 (((
380 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
381
382
383 )))
384
385 (((
386 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
387
388
389 )))
390
391 (((
392 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 )))
394
395 (((
396 Final Payload is
397 )))
398
399 (((
400 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 )))
402
403 (((
404 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
405 )))
406
407 [[image:1653269759169-150.png||height="513" width="716"]]
408
409
410 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
411
412
413 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
414
415 Final Payload is
416
417 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
418
419 1. PAYVER: Defined by AT+PAYVER
420 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
423
424 [[image:image-20220602155039-4.png]]
425
426
427 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
428
429 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
430
431 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
432
433 DATA3=the rest of Valid value of RETURN10= **30**
434
435
436 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
437
438 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
439
440 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
441
442 * For US915 band, max 11 bytes for each uplink.
443
444 ~* For all other bands: max 51 bytes for each uplink.
445
446
447 Below are the uplink payloads:
448
449 [[image:1654157178836-407.png]]
450
451
452 === 3.3.5 Uplink on demand ===
453
454 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
455
456 Downlink control command:
457
458 **0x08 command**: Poll an uplink with current command set in RS485-LN.
459
460 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
461
462
463
464 === 3.3.6 Uplink on Interrupt ===
465
466 RS485-LN support external Interrupt uplink since hardware v1.2 release.
467
468 [[image:1654157342174-798.png]]
469
470 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
471
472
473 == 3.4 Uplink Payload ==
474
475 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
476 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
477 |Value|(% style="width:120px" %)(((
478 Battery(mV)
479
480 &
481
482 Interrupt _Flag
483 )))|(% style="width:116px" %)(((
484 PAYLOAD_VER
485
486
487 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
488
489 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
490
491
492 == 3.5 Configure RS485-BL via AT or Downlink ==
493
494 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
495
496 There are two kinds of Commands:
497
498 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
499
500 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
501
502 === 3.5.1 Common Commands ===
503
504 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
505
506
507 === 3.5.2 Sensor related commands ===
508
509 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
510
511 [[image:image-20220602163333-5.png||height="263" width="1160"]]
512
513 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
514
515
516 === 3.5.3 Sensor related commands ===
517
518 ==== ====
519
520 ==== **RS485 Debug Command** ====
521
522 This command is used to configure the RS485 devices; they won’t be used during sampling.
523
524 * **AT Command**
525
526 (% class="box infomessage" %)
527 (((
528 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
529 )))
530
531 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
532
533 * **Downlink Payload**
534
535 Format: A8 MM NN XX XX XX XX YY
536
537 Where:
538
539 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
540 * NN: The length of RS485 command
541 * XX XX XX XX: RS485 command total NN bytes
542 * YY: How many bytes will be uplink from the return of this RS485 command,
543 ** if YY=0, RS485-LN will execute the downlink command without uplink;
544 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
545 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
546
547 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
548
549 To connect a Modbus Alarm with below commands.
550
551 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
552
553 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
554
555 So if user want to use downlink command to control to RS485 Alarm, he can use:
556
557 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
558
559 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
560
561 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
562
563
564 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
565
566 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
567
568
569 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
570
571 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
572
573 [[image:1654159460680-153.png]]
574
575
576
577 ==== **Set Payload version** ====
578
579 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
580
581 * **AT Command:**
582
583 (% class="box infomessage" %)
584 (((
585 **AT+PAYVER: Set PAYVER field = 1**
586 )))
587
588 * **Downlink Payload:**
589
590 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
591
592 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
593
594
595
596 ==== **Set RS485 Sampling Commands** ====
597
598 AT+COMMANDx or AT+DATACUTx
599
600 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
601
602
603 * **AT Command:**
604
605 (% class="box infomessage" %)
606 (((
607 **AT+COMMANDx: Configure RS485 read command to sensor.**
608 )))
609
610 (% class="box infomessage" %)
611 (((
612 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
613 )))
614
615
616 * **Downlink Payload:**
617
618 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
619
620 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
621
622 Format: AF MM NN LL XX XX XX XX YY
623
624 Where:
625
626 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
627 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
628 * LL:  The length of AT+COMMAND or AT+DATACUT command
629 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
630 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
631
632 **Example:**
633
634 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
635
636 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
637
638 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
639
640
641
642 ==== **Fast command to handle MODBUS device** ====
643
644 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
645
646 This command is valid since v1.3 firmware version
647
648 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
649
650
651 **Example:**
652
653 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
654 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
655 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
656
657 [[image:image-20220602165351-6.png]]
658
659 [[image:image-20220602165351-7.png]]
660
661
662
663 ==== **RS485 command timeout** ====
664
665 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
666
667 Default value: 0, range:  0 ~~ 65 seconds
668
669 * **AT Command:**
670
671 (% class="box infomessage" %)
672 (((
673 **AT+CMDDLaa=hex(bb cc)*1000**
674 )))
675
676 **Example:**
677
678 **AT+CMDDL1=1000** to send the open time to 1000ms
679
680
681 * **Downlink Payload:**
682
683 **0x AA aa bb cc**
684
685 Same as: AT+CMDDLaa=hex(bb cc)*1000
686
687 **Example:**
688
689 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
690
691
692
693 ==== **Uplink payload mode** ====
694
695 Define to use one uplink or multiple uplinks for the sampling.
696
697 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
698
699 * **AT Command:**
700
701 (% class="box infomessage" %)
702 (((
703 **AT+DATAUP=0**
704 )))
705
706 (% class="box infomessage" %)
707 (((
708 **AT+DATAUP=1**
709 )))
710
711
712 * **Downlink Payload:**
713
714 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
715
716 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
717
718
719
720 ==== **Manually trigger an Uplink** ====
721
722 Ask device to send an uplink immediately.
723
724 * **AT Command:**
725
726 No AT Command for this, user can press the [[ACT button>>path:#Button]] for 1 second for the same.
727
728
729 * **Downlink Payload:**
730
731 **0x08 FF**, RS485-LN will immediately send an uplink.
732
733
734 ==== ====
735
736 ==== **Clear RS485 Command** ====
737
738 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
739
740 * **AT Command:**
741
742 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
743
744 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
745
746 Example screen shot after clear all RS485 commands. 
747
748
749 The uplink screen shot is:
750
751 [[image:1654160691922-496.png]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
752
753
754 * **Downlink Payload:**
755
756 **0x09 aa bb** same as AT+CMDEAR=aa,bb
757
758
759
760 ==== **Set Serial Communication Parameters** ====
761
762 Set the Rs485 serial communication parameters:
763
764 * **AT Command:**
765
766 Set Baud Rate:
767
768 (% class="box infomessage" %)
769 (((
770 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
771 )))
772
773 Set UART Parity
774
775 (% class="box infomessage" %)
776 (((
777 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
778 )))
779
780 Set STOPBIT
781
782 (% class="box infomessage" %)
783 (((
784 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
785 )))
786
787
788 * **Downlink Payload:**
789
790 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
791
792 **Example:**
793
794 * A7 01 00 60   same as AT+BAUDR=9600
795 * A7 01 04 80  same as AT+BAUDR=115200
796
797 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
798
799 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
800
801
802 == 3.6 Listening mode for RS485 network ==
803
804 This feature support since firmware v1.4
805
806 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
807
808 [[image:image-20220602171200-8.png||height="567" width="1007"]]
809
810 To enable the listening mode, use can run the command AT+RXMODE.
811
812
813 (% border="1" style="background-color:#ffffcc; width:500px" %)
814 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
815 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
816 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
817 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
818 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
819
820 **Downlink Command:**
821
822 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
823
824
825 **Example**:
826
827 The RS485-LN is set to AT+RXMODE=2,1000
828
829 There is a two Modbus commands in the RS485 network as below:
830
831 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
832
833 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
834
835 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
836
837 [[image:image-20220602171200-9.png]]
838
839
840 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
841
842
843 == 3.7 Buttons ==
844
845
846 (% border="1" style="background-color:#f7faff; width:500px" %)
847 |=**Button**|=(% style="width: 1420px;" %)**Feature**
848 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
849 |**RST**|(% style="width:1420px" %)Reboot RS485
850 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>path:#upgrade_image]]
851
852 == 3.8 LEDs ==
853
854 (% border="1" style="background-color:#f7faff; width:500px" %)
855 |=**LEDs**|=**Feature**
856 |**PWR**|Always on if there is power
857 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
858
859 = 4. Case Study =
860
861 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
862
863
864 = 5. Use AT Command =
865
866 == 5.1 Access AT Command ==
867
868 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
869
870 [[image:1654162355560-817.png]]
871
872
873 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
874
875 [[image:1654162368066-342.png]]
876
877
878 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="3.5ConfigureRS485-BLviaATorDownlink"]]
879
880
881 == 5.2 Common AT Command Sequence ==
882
883 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
884
885 If device has not joined network yet:
886
887 (% class="box infomessage" %)
888 (((
889 **AT+FDR**
890 )))
891
892 (% class="box infomessage" %)
893 (((
894 **AT+NJM=0**
895 )))
896
897 (% class="box infomessage" %)
898 (((
899 **ATZ**
900 )))
901
902
903 If device already joined network:
904
905 (% class="box infomessage" %)
906 (((
907 **AT+NJM=0**
908 )))
909
910 (% class="box infomessage" %)
911 (((
912 **ATZ**
913 )))
914
915
916 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
917
918
919 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
920
921 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
922
923 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
924
925 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
926
927 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
928
929 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
930
931 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
932
933 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
934
935 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
936
937 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
938
939
940 (% style="color:red" %)**Note:**
941
942 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
943 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
944 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
945 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
946
947 [[image:1654162478620-421.png]]
948
949
950 = 6. FAQ =
951
952 == 6.1 How to upgrade the image? ==
953
954 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
955
956 * Support new features
957 * For bug fix
958 * Change LoRaWAN bands.
959
960 Below shows the hardware connection for how to upload an image to RS485-LN:
961
962 [[image:1654162535040-878.png]]
963
964 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
965
966 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
967
968 **Step3: **Open flashloader; choose the correct COM port to update.
969
970 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
971
972 [[image:image-20220602102605-1.png]]
973
974
975 [[image:image-20220602102637-2.png]]
976
977
978 [[image:image-20220602102715-3.png]]
979
980 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
981
982 [[image:image-20220602175638-10.png]]
983
984
985 == 6.2 How to change the LoRa Frequency Bands/Region? ==
986
987 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
988
989
990 == 6.3 How many RS485-Slave can RS485-BL connects? ==
991
992 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
993
994
995 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
996
997 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
998
999 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1000
1001
1002 = 7. Trouble Shooting =
1003
1004 == 7.1 Downlink doesn’t work, how to solve it? ==
1005
1006 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1007
1008
1009 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1010
1011 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1012
1013
1014 = 8. Order Info =
1015
1016 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1017
1018 (% style="color:blue" %)**XXX:**
1019
1020 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1021 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1022 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1023 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1024 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1025 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1026 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1027 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1028 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1029 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1030
1031 = 9.Packing Info =
1032
1033
1034 **Package Includes**:
1035
1036 * RS485-LN x 1
1037 * Stick Antenna for LoRa RF part x 1
1038 * Program cable x 1
1039
1040 **Dimension and weight**:
1041
1042 * Device Size: 13.5 x 7 x 3 cm
1043 * Device Weight: 105g
1044 * Package Size / pcs : 14.5 x 8 x 5 cm
1045 * Weight / pcs : 170g
1046
1047 = 10. FCC Caution for RS485LN-US915 =
1048
1049 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1050
1051 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1052
1053
1054 **IMPORTANT NOTE:**
1055
1056 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1057
1058 —Reorient or relocate the receiving antenna.
1059
1060 —Increase the separation between the equipment and receiver.
1061
1062 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1063
1064 —Consult the dealer or an experienced radio/TV technician for help.
1065
1066
1067 **FCC Radiation Exposure Statement:**
1068
1069 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1070
1071
1072 = 11. Support =
1073
1074 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1075 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0