Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 )))
35 )))
36
37 [[image:1653267211009-519.png||height="419" width="724"]]
38
39 == 1.2 Specifications ==
40
41 **Hardware System:**
42
43 * STM32L072CZT6 MCU
44 * SX1276/78 Wireless Chip 
45 * Power Consumption (exclude RS485 device):
46 ** Idle: 32mA@12v
47
48 *
49 ** 20dB Transmit: 65mA@12v
50
51 **Interface for Model:**
52
53 * RS485
54 * Power Input 7~~ 24V DC. 
55
56 **LoRa Spec:**
57
58 * Frequency Range:
59 ** Band 1 (HF): 862 ~~ 1020 Mhz
60 ** Band 2 (LF): 410 ~~ 528 Mhz
61 * 168 dB maximum link budget.
62 * +20 dBm - 100 mW constant RF output vs.
63 * +14 dBm high efficiency PA.
64 * Programmable bit rate up to 300 kbps.
65 * High sensitivity: down to -148 dBm.
66 * Bullet-proof front end: IIP3 = -12.5 dBm.
67 * Excellent blocking immunity.
68 * Low RX current of 10.3 mA, 200 nA register retention.
69 * Fully integrated synthesizer with a resolution of 61 Hz.
70 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
71 * Built-in bit synchronizer for clock recovery.
72 * Preamble detection.
73 * 127 dB Dynamic Range RSSI.
74 * Automatic RF Sense and CAD with ultra-fast AFC.
75 * Packet engine up to 256 bytes with CRC.
76
77 == 1.3 Features ==
78
79 * LoRaWAN Class A & Class C protocol (default Class C)
80 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
81 * AT Commands to change parameters
82 * Remote configure parameters via LoRa Downlink
83 * Firmware upgradable via program port
84 * Support multiply RS485 devices by flexible rules
85 * Support Modbus protocol
86 * Support Interrupt uplink (Since hardware version v1.2)
87
88 == 1.4 Applications ==
89
90 * Smart Buildings & Home Automation
91 * Logistics and Supply Chain Management
92 * Smart Metering
93 * Smart Agriculture
94 * Smart Cities
95 * Smart Factory
96
97 == 1.5 Firmware Change log ==
98
99 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100
101 == 1.6 Hardware Change log ==
102
103 (((
104 (((
105 v1.2: Add External Interrupt Pin.
106
107 v1.0: Release
108 )))
109 )))
110
111 = 2. Power ON Device =
112
113 (((
114 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
115
116 * Power Source VIN to RS485-LN VIN+
117 * Power Source GND to RS485-LN VIN-
118
119 (((
120 Once there is power, the RS485-LN will be on.
121 )))
122
123 [[image:1653268091319-405.png]]
124 )))
125
126 = 3. Operation Mode =
127
128 == 3.1 How it works? ==
129
130 (((
131 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
132 )))
133
134 == 3.2 Example to join LoRaWAN network ==
135
136 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
137
138 [[image:1653268155545-638.png||height="334" width="724"]]
139
140 (((
141 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
142
143 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
144
145 [[image:1653268227651-549.png||height="592" width="720"]]
146
147 (((
148 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
149 )))
150
151 (((
152 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
153 )))
154
155 (((
156 Each RS485-LN is shipped with a sticker with unique device EUI:
157 )))
158 )))
159
160 [[image:1652953462722-299.png]]
161
162 (((
163 (((
164 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
165 )))
166
167 (((
168 Add APP EUI in the application.
169 )))
170 )))
171
172 [[image:image-20220519174512-1.png]]
173
174 [[image:image-20220519174512-2.png||height="323" width="720"]]
175
176 [[image:image-20220519174512-3.png||height="556" width="724"]]
177
178 [[image:image-20220519174512-4.png]]
179
180 You can also choose to create the device manually.
181
182 [[image:1652953542269-423.png||height="710" width="723"]]
183
184 Add APP KEY and DEV EUI
185
186 [[image:1652953553383-907.png||height="514" width="724"]]
187
188
189 (((
190 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
191 )))
192
193 [[image:1652953568895-172.png||height="232" width="724"]]
194
195 == 3.3 Configure Commands to read data ==
196
197 (((
198 (((
199 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
200 )))
201
202 (((
203 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
204 )))
205 )))
206
207 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
208
209 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
210
211 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
212 |(((
213 **AT Commands**
214 )))|(% style="width:285px" %)(((
215 **Description**
216 )))|(% style="width:347px" %)(((
217 **Example**
218 )))
219 |(((
220 AT+BAUDR
221 )))|(% style="width:285px" %)(((
222 Set the baud rate (for RS485 connection). Default Value is: 9600.
223 )))|(% style="width:347px" %)(((
224 (((
225 AT+BAUDR=9600
226 )))
227
228 (((
229 Options: (1200,2400,4800,14400,19200,115200)
230 )))
231 )))
232 |(((
233 AT+PARITY
234 )))|(% style="width:285px" %)(((
235 Set UART parity (for RS485 connection)
236 )))|(% style="width:347px" %)(((
237 (((
238 AT+PARITY=0
239 )))
240
241 (((
242 Option: 0: no parity, 1: odd parity, 2: even parity
243 )))
244 )))
245 |(((
246 AT+STOPBIT
247 )))|(% style="width:285px" %)(((
248 (((
249 Set serial stopbit (for RS485 connection)
250 )))
251
252 (((
253
254 )))
255 )))|(% style="width:347px" %)(((
256 (((
257 AT+STOPBIT=0 for 1bit
258 )))
259
260 (((
261 AT+STOPBIT=1 for 1.5 bit
262 )))
263
264 (((
265 AT+STOPBIT=2 for 2 bits
266 )))
267 )))
268
269 === 3.3.2 Configure sensors ===
270
271 (((
272 (((
273 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
274 )))
275 )))
276
277 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
278 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
279 |AT+CFGDEV|(% style="width:418px" %)(((
280 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
281
282 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
283
284 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
285 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
286
287 === 3.3.3 Configure read commands for each sampling ===
288
289 (((
290 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
291 )))
292
293 (((
294 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
295 )))
296
297 (((
298 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
299 )))
300
301 (((
302 This section describes how to achieve above goals.
303 )))
304
305 (((
306 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
307 )))
308
309 (((
310 **Command from RS485-BL to Sensor:**
311 )))
312
313 (((
314 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
315 )))
316
317 (((
318 **Handle return from sensors to RS485-BL**:
319 )))
320
321 (((
322 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
323 )))
324
325 * (((
326 **AT+DATACUT**
327 )))
328
329 (((
330 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
331 )))
332
333 * (((
334 **AT+SEARCH**
335 )))
336
337 (((
338 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
339 )))
340
341 (((
342 **Define wait timeout:**
343 )))
344
345 (((
346 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
347 )))
348
349 (((
350 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
351 )))
352
353 **Examples:**
354
355 Below are examples for the how above AT Commands works.
356
357 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
358
359 (% border="1" class="table-bordered" %)
360 |(((
361 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
362
363 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
364
365 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
366 )))
367
368 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
369
370 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
371
372 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
373
374 (% border="1" class="table-bordered" %)
375 |(((
376 **AT+SEARCHx=aa,xx xx xx xx xx**
377
378 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
379 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
380
381
382 )))
383
384 Examples:
385
386 1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
387
388 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
389
390 The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
391
392 [[image:1652954654347-831.png]]
393
394
395 1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396
397 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
398
399 Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
400
401 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
402
403
404 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
405
406 |(((
407 **AT+DATACUTx=a,b,c**
408
409 * **a: length for the return of AT+COMMAND**
410 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
411 * **c: define the position for valid value.  **
412 )))
413
414 Examples:
415
416 * Grab bytes:
417
418 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
419
420 * Grab a section.
421
422 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
423
424 * Grab different sections.
425
426 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
427
428
429 Note:
430
431 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
432
433 Example:
434
435 AT+COMMAND1=11 01 1E D0,0
436
437 AT+SEARCH1=1,1E 56 34
438
439 AT+DATACUT1=0,2,1~~5
440
441 Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
442
443 String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
444
445 Valid payload after DataCUT command: 2e 30 58 5f 36
446
447 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
448
449
450
451
452 1.
453 11.
454 111. Compose the uplink payload
455
456 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
457
458
459 **Examples: AT+DATAUP=0**
460
461 Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
462
463 Final Payload is
464
465 Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
466
467 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
468
469 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
470
471
472
473 **Examples: AT+DATAUP=1**
474
475 Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
476
477 Final Payload is
478
479 Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
480
481 1. Battery Info (2 bytes): Battery voltage
482 1. PAYVER (1 byte): Defined by AT+PAYVER
483 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
484 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
485 1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
486
487 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
488
489
490 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
491
492 DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
493
494 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
495
496 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
497
498
499
500 Below are the uplink payloads:
501
502 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
503
504
505 Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
506
507 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
508
509 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
510
511 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
512
513 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
514
515
516
517 1.
518 11.
519 111. Uplink on demand
520
521 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
522
523 Downlink control command:
524
525 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
526
527 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
528
529
530
531 1.
532 11.
533 111. Uplink on Interrupt
534
535 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
536
537 AT+INTMOD=0  Disable Interrupt
538
539 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
540
541 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
542
543 AT+INTMOD=3  Interrupt trigger by rising edge.
544
545
546 1.
547 11. Uplink Payload
548
549 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
550 |Value|(((
551 Battery(mV)
552
553 &
554
555 Interrupt _Flag
556 )))|(((
557 PAYLOAD_VER
558
559
560 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
561
562 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
563
564
565 function Decoder(bytes, port) {
566
567 ~/~/Payload Formats of RS485-BL Deceive
568
569 return {
570
571 ~/~/Battery,units:V
572
573 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
574
575 ~/~/GPIO_EXTI 
576
577 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
578
579 ~/~/payload of version
580
581 Pay_ver:bytes[2],
582
583 };
584
585 }
586
587
588
589
590
591
592
593 TTN V3 uplink screen shot.
594
595 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
596
597 1.
598 11. Configure RS485-BL via AT or Downlink
599
600 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
601
602 There are two kinds of Commands:
603
604 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
605
606 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
607
608 1.
609 11.
610 111. Common Commands:
611
612 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
613
614
615 1.
616 11.
617 111. Sensor related commands:
618
619 ==== Choose Device Type (RS485 or TTL) ====
620
621 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
622
623 * AT Command
624
625 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
626
627 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
628
629
630 * Downlink Payload
631
632 **0A aa**     à same as AT+MOD=aa
633
634
635
636 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
637
638 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
639
640 * AT Command
641
642 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
643
644 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
645
646
647
648 * Downlink Payload
649
650 Format: A8 MM NN XX XX XX XX YY
651
652 Where:
653
654 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
655 * NN: The length of RS485 command
656 * XX XX XX XX: RS485 command total NN bytes
657 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
658
659 **Example 1:**
660
661 To connect a Modbus Alarm with below commands.
662
663 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
664
665 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
666
667 So if user want to use downlink command to control to RS485 Alarm, he can use:
668
669 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
670
671 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
672
673 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
674
675
676 **Example 2:**
677
678 Check TTL Sensor return:
679
680 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
681
682
683
684
685 ==== Set Payload version ====
686
687 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
688
689 * AT Command:
690
691 AT+PAYVER: Set PAYVER field = 1
692
693
694 * Downlink Payload:
695
696 0xAE 01   à Set PAYVER field =  0x01
697
698 0xAE 0F   à Set PAYVER field =  0x0F
699
700
701 ==== Set RS485 Sampling Commands ====
702
703 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
704
705 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
706
707
708 * AT Command:
709
710 AT+COMMANDx: Configure RS485 read command to sensor.
711
712 AT+DATACUTx: Configure how to handle return from RS485 devices.
713
714 AT+SEARCHx: Configure search command
715
716
717 * Downlink Payload:
718
719 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
720
721 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
722
723 Format: AF MM NN LL XX XX XX XX YY
724
725 Where:
726
727 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
728 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
729 * LL: The length of AT+COMMAND or AT+DATACUT command
730 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
731 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
732
733 Example:
734
735 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
736
737 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
738
739 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
740
741
742 0xAB downlink command can be used for set AT+SEARCHx
743
744 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
745
746 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
747 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
748
749 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
750
751
752 ==== Fast command to handle MODBUS device ====
753
754 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
755
756 This command is valid since v1.3 firmware version
757
758
759 AT+MBFUN has only two value:
760
761 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
762
763 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
764
765 * AT+MBFUN=0: Disable Modbus fast reading.
766
767 Example:
768
769 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
770 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
771 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
772
773 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
774
775
776 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
777
778
779 * Downlink Commands:
780
781 A9 aa -à Same as AT+MBFUN=aa
782
783
784 ==== RS485 command timeout ====
785
786 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
787
788 Default value: 0, range:  0 ~~ 5 seconds
789
790
791 * AT Command:
792
793 AT+CMDDLaa=hex(bb cc)
794
795 Example:
796
797 **AT+CMDDL1=1000** to send the open time to 1000ms
798
799
800 * Downlink Payload:
801
802 0x AA aa bb cc
803
804 Same as: AT+CMDDLaa=hex(bb cc)
805
806 Example:
807
808 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
809
810
811 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
812
813 Define to use one uplink or multiple uplinks for the sampling.
814
815 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
816
817 * AT Command:
818
819 AT+DATAUP=0
820
821 AT+DATAUP=1
822
823
824 * Downlink Payload:
825
826 0xAD 00   à Same as AT+DATAUP=0
827
828 0xAD 01   à Same as AT+DATAUP=1
829
830
831 ==== Manually trigger an Uplink ====
832
833 Ask device to send an uplink immediately.
834
835 * Downlink Payload:
836
837 0x08 FF, RS485-BL will immediately send an uplink.
838
839
840 ==== Clear RS485 Command ====
841
842 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
843
844
845 * AT Command:
846
847 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
848
849 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
850
851 Example screen shot after clear all RS485 commands. 
852
853
854
855 The uplink screen shot is:
856
857 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
858
859
860 * Downlink Payload:
861
862 0x09 aa bb same as AT+CMDEAR=aa,bb
863
864
865 ==== Set Serial Communication Parameters ====
866
867 Set the Rs485 serial communication parameters:
868
869 * AT Command:
870
871 Set Baud Rate:
872
873 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
874
875
876 Set UART parity
877
878 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
879
880
881 Set STOPBIT
882
883 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
884
885
886 * Downlink Payload:
887
888 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
889
890 Example:
891
892 * A7 01 00 60   same as AT+BAUDR=9600
893 * A7 01 04 80  same as AT+BAUDR=115200
894
895 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
896
897 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
898
899
900 ==== Control output power duration ====
901
902 User can set the output power duration before each sampling.
903
904 * AT Command:
905
906 Example:
907
908 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
909
910 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
911
912
913 * LoRaWAN Downlink Command:
914
915 07 01 aa bb  Same as AT+5VT=(aa bb)
916
917 07 02 aa bb  Same as AT+3V3T=(aa bb)
918
919
920
921
922 1.
923 11. Buttons
924
925 |**Button**|**Feature**
926 |**RST**|Reboot RS485-BL
927
928 1.
929 11. +3V3 Output
930
931 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
932
933 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
934
935
936 The +3V3 output time can be controlled by AT Command.
937
938 **AT+3V3T=1000**
939
940 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
941
942
943 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
944
945
946 1.
947 11. +5V Output
948
949 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
950
951 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
952
953
954 The 5V output time can be controlled by AT Command.
955
956 **AT+5VT=1000**
957
958 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
959
960
961 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
962
963
964
965
966 1.
967 11. LEDs
968
969 |**LEDs**|**Feature**
970 |**LED1**|Blink when device transmit a packet.
971
972 1.
973 11. Switch Jumper
974
975 |**Switch Jumper**|**Feature**
976 |**SW1**|(((
977 ISP position: Upgrade firmware via UART
978
979 Flash position: Configure device, check running status.
980 )))
981 |**SW2**|(((
982 5V position: set to compatible with 5v I/O.
983
984 3.3v position: set to compatible with 3.3v I/O.,
985 )))
986
987 +3.3V: is always ON
988
989 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
990
991 1. Case Study
992
993 User can check this URL for some case studies.
994
995 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
996
997
998
999
1000 1. Use AT Command
1001 11. Access AT Command
1002
1003 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1004
1005 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1006
1007
1008 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1009
1010 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1011
1012
1013
1014 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1015
1016
1017
1018 1.
1019 11. Common AT Command Sequence
1020 111. Multi-channel ABP mode (Use with SX1301/LG308)
1021
1022 If device has not joined network yet:
1023
1024 AT+FDR
1025
1026 AT+NJM=0
1027
1028 ATZ
1029
1030
1031 If device already joined network:
1032
1033 AT+NJM=0
1034
1035 ATZ
1036
1037 1.
1038 11.
1039 111. Single-channel ABP mode (Use with LG01/LG02)
1040
1041 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1042
1043 AT+NJM=0 Set to ABP mode
1044
1045 AT+ADR=0 Set the Adaptive Data Rate Off
1046
1047 AT+DR=5  Set Data Rate
1048
1049 AT+TDC=60000  Set transmit interval to 60 seconds
1050
1051 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1052
1053 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1054
1055 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1056
1057 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1058
1059 ATZ          Reset MCU
1060
1061 **Note:**
1062
1063 1. Make sure the device is set to ABP mode in the IoT Server.
1064 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1065 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1066 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1067
1068 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1069
1070
1071 1. FAQ
1072 11. How to upgrade the image?
1073
1074 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1075
1076 * Support new features
1077 * For bug fix
1078 * Change LoRaWAN bands.
1079
1080 Below shows the hardware connection for how to upload an image to RS485-BL:
1081
1082 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1083
1084 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1085
1086 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1087
1088 **Step3: **Open flashloader; choose the correct COM port to update.
1089
1090
1091 |(((
1092 HOLD PRO then press the RST button, SYS will be ON, then click next
1093 )))
1094
1095 |(((
1096 Board detected
1097 )))
1098
1099 |(((
1100
1101 )))
1102
1103 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1104
1105
1106
1107 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1108
1109
1110 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1111
1112
1113 1.
1114 11. How to change the LoRa Frequency Bands/Region?
1115
1116 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1117
1118
1119
1120 1.
1121 11. How many RS485-Slave can RS485-BL connects?
1122
1123 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1124
1125
1126
1127
1128 1. Trouble Shooting     
1129 11. Downlink doesn’t work, how to solve it?
1130
1131 Please see this link for debug:
1132
1133 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1134
1135
1136
1137 1.
1138 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1139
1140 It might about the channels mapping. Please see for detail.
1141
1142 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1143
1144
1145
1146 1. Order Info
1147
1148 **Part Number: RS485-BL-XXX**
1149
1150 **XXX:**
1151
1152 * **EU433**: frequency bands EU433
1153 * **EU868**: frequency bands EU868
1154 * **KR920**: frequency bands KR920
1155 * **CN470**: frequency bands CN470
1156 * **AS923**: frequency bands AS923
1157 * **AU915**: frequency bands AU915
1158 * **US915**: frequency bands US915
1159 * **IN865**: frequency bands IN865
1160 * **RU864**: frequency bands RU864
1161 * **KZ865: **frequency bands KZ865
1162
1163 1. Packing Info
1164
1165 **Package Includes**:
1166
1167 * RS485-BL x 1
1168 * Stick Antenna for LoRa RF part x 1
1169 * Program cable x 1
1170
1171 **Dimension and weight**:
1172
1173 * Device Size: 13.5 x 7 x 3 cm
1174 * Device Weight: 105g
1175 * Package Size / pcs : 14.5 x 8 x 5 cm
1176 * Weight / pcs : 170g
1177
1178 1. Support
1179
1180 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1181 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1182
1183 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0