Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud: (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity: (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203
204 For parameter description, please refer to AT command set
205
206 [[image:1657249793983-486.png]]
207
208
209 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210
211 [[image:1657249831934-534.png]]
212
213
214
215 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216
217 This feature is supported since firmware version v1.0.1
218
219
220 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223
224
225
226 [[image:1657249864775-321.png]]
227
228
229
230 [[image:1657249930215-289.png]]
231
232
233
234 === 2.2.6 Use MQTT protocol to uplink data ===
235
236 This feature is supported since firmware version v110
237
238
239 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 * (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 * (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246
247
248
249 [[image:1657249978444-674.png]]
250
251
252 [[image:1657249990869-686.png]]
253
254
255
256 (((
257 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 )))
259
260
261
262 === 2.2.7 Use TCP protocol to uplink data ===
263
264
265 This feature is supported since firmware version v110
266
267
268 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
269 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
270
271 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
272
273
274
275 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
276
277
278 === 2.2.8 Change Update Interval ===
279
280 User can use below command to change the (% style="color:green" %)**uplink interval**.
281
282 **~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
283
284
285 (% style="color:red" %)**NOTE:**
286
287 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
288
289
290
291
292
293
294
295 == 2.3 Uplink Payload ==
296
297
298 === 2.3.1 MOD~=0(Default Mode) ===
299
300 LSE01 will uplink payload via LoRaWAN with below payload format: 
301
302 (((
303 Uplink payload includes in total 11 bytes.
304 )))
305
306 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
307 |(((
308 **Size**
309
310 **(bytes)**
311 )))|**2**|**2**|**2**|**2**|**2**|**1**
312 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
313 Temperature
314
315 (Reserve, Ignore now)
316 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
317 MOD & Digital Interrupt
318
319 (Optional)
320 )))
321
322 === 2.3.2 MOD~=1(Original value) ===
323
324 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
325
326 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
327 |(((
328 **Size**
329
330 **(bytes)**
331 )))|**2**|**2**|**2**|**2**|**2**|**1**
332 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
333 Temperature
334
335 (Reserve, Ignore now)
336 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
337 MOD & Digital Interrupt
338
339 (Optional)
340 )))
341
342 === 2.3.3 Battery Info ===
343
344 (((
345 Check the battery voltage for LSE01.
346 )))
347
348 (((
349 Ex1: 0x0B45 = 2885mV
350 )))
351
352 (((
353 Ex2: 0x0B49 = 2889mV
354 )))
355
356
357
358 === 2.3.4 Soil Moisture ===
359
360 (((
361 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
362 )))
363
364 (((
365 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
366 )))
367
368 (((
369
370 )))
371
372 (((
373 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
374 )))
375
376
377
378 === 2.3.5 Soil Temperature ===
379
380 (((
381 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
382 )))
383
384 (((
385 **Example**:
386 )))
387
388 (((
389 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
390 )))
391
392 (((
393 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
394 )))
395
396
397
398 === 2.3.6 Soil Conductivity (EC) ===
399
400 (((
401 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
402 )))
403
404 (((
405 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
406 )))
407
408 (((
409 Generally, the EC value of irrigation water is less than 800uS / cm.
410 )))
411
412 (((
413
414 )))
415
416 (((
417
418 )))
419
420 === 2.3.7 MOD ===
421
422 Firmware version at least v2.1 supports changing mode.
423
424 For example, bytes[10]=90
425
426 mod=(bytes[10]>>7)&0x01=1.
427
428
429 **Downlink Command:**
430
431 If payload = 0x0A00, workmode=0
432
433 If** **payload =** **0x0A01, workmode=1
434
435
436
437 === 2.3.8 ​Decode payload in The Things Network ===
438
439 While using TTN network, you can add the payload format to decode the payload.
440
441
442 [[image:1654505570700-128.png]]
443
444 (((
445 The payload decoder function for TTN is here:
446 )))
447
448 (((
449 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
450 )))
451
452
453 == 2.4 Uplink Interval ==
454
455 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
456
457
458
459 == 2.5 Downlink Payload ==
460
461 By default, LSE50 prints the downlink payload to console port.
462
463 [[image:image-20220606165544-8.png]]
464
465
466 (((
467 (% style="color:blue" %)**Examples:**
468 )))
469
470 (((
471
472 )))
473
474 * (((
475 (% style="color:blue" %)**Set TDC**
476 )))
477
478 (((
479 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
480 )))
481
482 (((
483 Payload:    01 00 00 1E    TDC=30S
484 )))
485
486 (((
487 Payload:    01 00 00 3C    TDC=60S
488 )))
489
490 (((
491
492 )))
493
494 * (((
495 (% style="color:blue" %)**Reset**
496 )))
497
498 (((
499 If payload = 0x04FF, it will reset the LSE01
500 )))
501
502
503 * (% style="color:blue" %)**CFM**
504
505 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
506
507
508
509 == 2.6 ​Show Data in DataCake IoT Server ==
510
511 (((
512 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
513 )))
514
515 (((
516
517 )))
518
519 (((
520 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
521 )))
522
523 (((
524 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
525 )))
526
527
528 [[image:1654505857935-743.png]]
529
530
531 [[image:1654505874829-548.png]]
532
533
534 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
535
536 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
537
538
539 [[image:1654505905236-553.png]]
540
541
542 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
543
544 [[image:1654505925508-181.png]]
545
546
547
548 == 2.7 Frequency Plans ==
549
550 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
551
552
553 === 2.7.1 EU863-870 (EU868) ===
554
555 (% style="color:#037691" %)** Uplink:**
556
557 868.1 - SF7BW125 to SF12BW125
558
559 868.3 - SF7BW125 to SF12BW125 and SF7BW250
560
561 868.5 - SF7BW125 to SF12BW125
562
563 867.1 - SF7BW125 to SF12BW125
564
565 867.3 - SF7BW125 to SF12BW125
566
567 867.5 - SF7BW125 to SF12BW125
568
569 867.7 - SF7BW125 to SF12BW125
570
571 867.9 - SF7BW125 to SF12BW125
572
573 868.8 - FSK
574
575
576 (% style="color:#037691" %)** Downlink:**
577
578 Uplink channels 1-9 (RX1)
579
580 869.525 - SF9BW125 (RX2 downlink only)
581
582
583
584 === 2.7.2 US902-928(US915) ===
585
586 Used in USA, Canada and South America. Default use CHE=2
587
588 (% style="color:#037691" %)**Uplink:**
589
590 903.9 - SF7BW125 to SF10BW125
591
592 904.1 - SF7BW125 to SF10BW125
593
594 904.3 - SF7BW125 to SF10BW125
595
596 904.5 - SF7BW125 to SF10BW125
597
598 904.7 - SF7BW125 to SF10BW125
599
600 904.9 - SF7BW125 to SF10BW125
601
602 905.1 - SF7BW125 to SF10BW125
603
604 905.3 - SF7BW125 to SF10BW125
605
606
607 (% style="color:#037691" %)**Downlink:**
608
609 923.3 - SF7BW500 to SF12BW500
610
611 923.9 - SF7BW500 to SF12BW500
612
613 924.5 - SF7BW500 to SF12BW500
614
615 925.1 - SF7BW500 to SF12BW500
616
617 925.7 - SF7BW500 to SF12BW500
618
619 926.3 - SF7BW500 to SF12BW500
620
621 926.9 - SF7BW500 to SF12BW500
622
623 927.5 - SF7BW500 to SF12BW500
624
625 923.3 - SF12BW500(RX2 downlink only)
626
627
628
629 === 2.7.3 CN470-510 (CN470) ===
630
631 Used in China, Default use CHE=1
632
633 (% style="color:#037691" %)**Uplink:**
634
635 486.3 - SF7BW125 to SF12BW125
636
637 486.5 - SF7BW125 to SF12BW125
638
639 486.7 - SF7BW125 to SF12BW125
640
641 486.9 - SF7BW125 to SF12BW125
642
643 487.1 - SF7BW125 to SF12BW125
644
645 487.3 - SF7BW125 to SF12BW125
646
647 487.5 - SF7BW125 to SF12BW125
648
649 487.7 - SF7BW125 to SF12BW125
650
651
652 (% style="color:#037691" %)**Downlink:**
653
654 506.7 - SF7BW125 to SF12BW125
655
656 506.9 - SF7BW125 to SF12BW125
657
658 507.1 - SF7BW125 to SF12BW125
659
660 507.3 - SF7BW125 to SF12BW125
661
662 507.5 - SF7BW125 to SF12BW125
663
664 507.7 - SF7BW125 to SF12BW125
665
666 507.9 - SF7BW125 to SF12BW125
667
668 508.1 - SF7BW125 to SF12BW125
669
670 505.3 - SF12BW125 (RX2 downlink only)
671
672
673
674 === 2.7.4 AU915-928(AU915) ===
675
676 Default use CHE=2
677
678 (% style="color:#037691" %)**Uplink:**
679
680 916.8 - SF7BW125 to SF12BW125
681
682 917.0 - SF7BW125 to SF12BW125
683
684 917.2 - SF7BW125 to SF12BW125
685
686 917.4 - SF7BW125 to SF12BW125
687
688 917.6 - SF7BW125 to SF12BW125
689
690 917.8 - SF7BW125 to SF12BW125
691
692 918.0 - SF7BW125 to SF12BW125
693
694 918.2 - SF7BW125 to SF12BW125
695
696
697 (% style="color:#037691" %)**Downlink:**
698
699 923.3 - SF7BW500 to SF12BW500
700
701 923.9 - SF7BW500 to SF12BW500
702
703 924.5 - SF7BW500 to SF12BW500
704
705 925.1 - SF7BW500 to SF12BW500
706
707 925.7 - SF7BW500 to SF12BW500
708
709 926.3 - SF7BW500 to SF12BW500
710
711 926.9 - SF7BW500 to SF12BW500
712
713 927.5 - SF7BW500 to SF12BW500
714
715 923.3 - SF12BW500(RX2 downlink only)
716
717
718
719 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
720
721 (% style="color:#037691" %)**Default Uplink channel:**
722
723 923.2 - SF7BW125 to SF10BW125
724
725 923.4 - SF7BW125 to SF10BW125
726
727
728 (% style="color:#037691" %)**Additional Uplink Channel**:
729
730 (OTAA mode, channel added by JoinAccept message)
731
732 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
733
734 922.2 - SF7BW125 to SF10BW125
735
736 922.4 - SF7BW125 to SF10BW125
737
738 922.6 - SF7BW125 to SF10BW125
739
740 922.8 - SF7BW125 to SF10BW125
741
742 923.0 - SF7BW125 to SF10BW125
743
744 922.0 - SF7BW125 to SF10BW125
745
746
747 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
748
749 923.6 - SF7BW125 to SF10BW125
750
751 923.8 - SF7BW125 to SF10BW125
752
753 924.0 - SF7BW125 to SF10BW125
754
755 924.2 - SF7BW125 to SF10BW125
756
757 924.4 - SF7BW125 to SF10BW125
758
759 924.6 - SF7BW125 to SF10BW125
760
761
762 (% style="color:#037691" %)** Downlink:**
763
764 Uplink channels 1-8 (RX1)
765
766 923.2 - SF10BW125 (RX2)
767
768
769
770 === 2.7.6 KR920-923 (KR920) ===
771
772 Default channel:
773
774 922.1 - SF7BW125 to SF12BW125
775
776 922.3 - SF7BW125 to SF12BW125
777
778 922.5 - SF7BW125 to SF12BW125
779
780
781 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
782
783 922.1 - SF7BW125 to SF12BW125
784
785 922.3 - SF7BW125 to SF12BW125
786
787 922.5 - SF7BW125 to SF12BW125
788
789 922.7 - SF7BW125 to SF12BW125
790
791 922.9 - SF7BW125 to SF12BW125
792
793 923.1 - SF7BW125 to SF12BW125
794
795 923.3 - SF7BW125 to SF12BW125
796
797
798 (% style="color:#037691" %)**Downlink:**
799
800 Uplink channels 1-7(RX1)
801
802 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
803
804
805
806 === 2.7.7 IN865-867 (IN865) ===
807
808 (% style="color:#037691" %)** Uplink:**
809
810 865.0625 - SF7BW125 to SF12BW125
811
812 865.4025 - SF7BW125 to SF12BW125
813
814 865.9850 - SF7BW125 to SF12BW125
815
816
817 (% style="color:#037691" %) **Downlink:**
818
819 Uplink channels 1-3 (RX1)
820
821 866.550 - SF10BW125 (RX2)
822
823
824
825
826 == 2.8 LED Indicator ==
827
828 The LSE01 has an internal LED which is to show the status of different state.
829
830 * Blink once when device power on.
831 * Solid ON for 5 seconds once device successful Join the network.
832 * Blink once when device transmit a packet.
833
834 == 2.9 Installation in Soil ==
835
836 **Measurement the soil surface**
837
838
839 [[image:1654506634463-199.png]] ​
840
841 (((
842 (((
843 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
844 )))
845 )))
846
847
848
849 [[image:1654506665940-119.png]]
850
851 (((
852 Dig a hole with diameter > 20CM.
853 )))
854
855 (((
856 Horizontal insert the probe to the soil and fill the hole for long term measurement.
857 )))
858
859
860 == 2.10 ​Firmware Change Log ==
861
862 (((
863 **Firmware download link:**
864 )))
865
866 (((
867 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
868 )))
869
870 (((
871
872 )))
873
874 (((
875 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
876 )))
877
878 (((
879
880 )))
881
882 (((
883 **V1.0.**
884 )))
885
886 (((
887 Release
888 )))
889
890
891 == 2.11 ​Battery Analysis ==
892
893 === 2.11.1 ​Battery Type ===
894
895 (((
896 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
897 )))
898
899 (((
900 The battery is designed to last for more than 5 years for the LSN50.
901 )))
902
903 (((
904 (((
905 The battery-related documents are as below:
906 )))
907 )))
908
909 * (((
910 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
911 )))
912 * (((
913 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
914 )))
915 * (((
916 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
917 )))
918
919 [[image:image-20220610172436-1.png]]
920
921
922
923 === 2.11.2 ​Battery Note ===
924
925 (((
926 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
927 )))
928
929
930
931 === 2.11.3 Replace the battery ===
932
933 (((
934 If Battery is lower than 2.7v, user should replace the battery of LSE01.
935 )))
936
937 (((
938 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
939 )))
940
941 (((
942 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
943 )))
944
945
946
947 = 3. ​Using the AT Commands =
948
949 == 3.1 Access AT Commands ==
950
951
952 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
953
954 [[image:1654501986557-872.png||height="391" width="800"]]
955
956
957 Or if you have below board, use below connection:
958
959
960 [[image:1654502005655-729.png||height="503" width="801"]]
961
962
963
964 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
965
966
967 [[image:1654502050864-459.png||height="564" width="806"]]
968
969
970 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
971
972
973 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
974
975 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
976
977 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
978
979 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
980
981
982 (% style="color:#037691" %)**General Commands**(%%)      
983
984 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
985
986 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
987
988 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
989
990 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
991
992
993 (% style="color:#037691" %)**Keys, IDs and EUIs management**
994
995 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
996
997 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
998
999 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1000
1001 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1002
1003 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1004
1005 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1006
1007 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1008
1009 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1010
1011 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1012
1013 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1014
1015 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1016
1017 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1018
1019 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1020
1021 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1022
1023 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1024
1025 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1026
1027
1028 (% style="color:#037691" %)**LoRa Network Management**
1029
1030 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1031
1032 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1033
1034 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1035
1036 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1037
1038 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1039
1040 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1041
1042 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1043
1044 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1045
1046 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1047
1048 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1049
1050 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1051
1052 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1053
1054 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1055
1056 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1057
1058 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1059
1060
1061 (% style="color:#037691" %)**Information** 
1062
1063 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1064
1065 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1066
1067 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1068
1069 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1070
1071 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1072
1073 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1074
1075 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1076
1077
1078 = ​4. FAQ =
1079
1080 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1081
1082 (((
1083 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1084 When downloading the images, choose the required image file for download. ​
1085 )))
1086
1087 (((
1088
1089 )))
1090
1091 (((
1092 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1093 )))
1094
1095 (((
1096
1097 )))
1098
1099 (((
1100 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1101 )))
1102
1103 (((
1104
1105 )))
1106
1107 (((
1108 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1109 )))
1110
1111 [[image:image-20220606154726-3.png]]
1112
1113
1114 When you use the TTN network, the US915 frequency bands use are:
1115
1116 * 903.9 - SF7BW125 to SF10BW125
1117 * 904.1 - SF7BW125 to SF10BW125
1118 * 904.3 - SF7BW125 to SF10BW125
1119 * 904.5 - SF7BW125 to SF10BW125
1120 * 904.7 - SF7BW125 to SF10BW125
1121 * 904.9 - SF7BW125 to SF10BW125
1122 * 905.1 - SF7BW125 to SF10BW125
1123 * 905.3 - SF7BW125 to SF10BW125
1124 * 904.6 - SF8BW500
1125
1126 (((
1127 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1128
1129 * (% style="color:#037691" %)**AT+CHE=2**
1130 * (% style="color:#037691" %)**ATZ**
1131 )))
1132
1133 (((
1134
1135
1136 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1137 )))
1138
1139 (((
1140
1141 )))
1142
1143 (((
1144 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1145 )))
1146
1147 [[image:image-20220606154825-4.png]]
1148
1149
1150 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1151
1152 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1153
1154
1155 = 5. Trouble Shooting =
1156
1157 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1158
1159 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1160
1161
1162 == 5.2 AT Command input doesn't work ==
1163
1164 (((
1165 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1166 )))
1167
1168
1169 == 5.3 Device rejoin in at the second uplink packet ==
1170
1171 (% style="color:#4f81bd" %)**Issue describe as below:**
1172
1173 [[image:1654500909990-784.png]]
1174
1175
1176 (% style="color:#4f81bd" %)**Cause for this issue:**
1177
1178 (((
1179 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1180 )))
1181
1182
1183 (% style="color:#4f81bd" %)**Solution: **
1184
1185 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1186
1187 [[image:1654500929571-736.png||height="458" width="832"]]
1188
1189
1190 = 6. ​Order Info =
1191
1192
1193 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1194
1195
1196 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1197
1198 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1199 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1200 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1201 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1202 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1203 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1204 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1205 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1206
1207 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1208
1209 * (% style="color:red" %)**4**(%%): 4000mAh battery
1210 * (% style="color:red" %)**8**(%%): 8500mAh battery
1211
1212 (% class="wikigeneratedid" %)
1213 (((
1214
1215 )))
1216
1217 = 7. Packing Info =
1218
1219 (((
1220
1221
1222 (% style="color:#037691" %)**Package Includes**:
1223 )))
1224
1225 * (((
1226 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1227 )))
1228
1229 (((
1230
1231
1232 (% style="color:#037691" %)**Dimension and weight**:
1233 )))
1234
1235 * (((
1236 Device Size: cm
1237 )))
1238 * (((
1239 Device Weight: g
1240 )))
1241 * (((
1242 Package Size / pcs : cm
1243 )))
1244 * (((
1245 Weight / pcs : g
1246
1247
1248 )))
1249
1250 = 8. Support =
1251
1252 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1253 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0