Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud:  (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity:  (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202 For parameter description, please refer to AT command set
203
204 [[image:1657249793983-486.png]]
205
206
207 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208
209 [[image:1657249831934-534.png]]
210
211
212
213 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214
215 This feature is supported since firmware version v1.0.1
216
217
218 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221
222 [[image:1657249864775-321.png]]
223
224
225 [[image:1657249930215-289.png]]
226
227
228
229 === 2.2.6 Use MQTT protocol to uplink data ===
230
231 This feature is supported since firmware version v110
232
233
234 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 * (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 * (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241
242 [[image:1657249978444-674.png]]
243
244
245 [[image:1657249990869-686.png]]
246
247
248 (((
249 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 )))
251
252
253
254 === 2.2.7 Use TCP protocol to uplink data ===
255
256 This feature is supported since firmware version v110
257
258
259 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261
262 [[image:1657250217799-140.png]]
263
264
265 [[image:1657250255956-604.png]]
266
267
268
269 === 2.2.8 Change Update Interval ===
270
271 User can use below command to change the (% style="color:green" %)**uplink interval**.
272
273 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274
275 (((
276 (% style="color:red" %)**NOTE:**
277 )))
278
279 (((
280 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 )))
282
283
284
285 == 2.3  Uplink Payload ==
286
287 In this mode, uplink payload includes in total 18 bytes
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 |=(% style="width: 50px;" %)(((
291 **Size(bytes)**
292 )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294
295 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296
297
298 [[image:image-20220708111918-4.png]]
299
300
301 The payload is ASCII string, representative same HEX:
302
303 0x72403155615900640c7817075e0a8c02f900 where:
304
305 * Device ID: 0x 724031556159 = 724031556159
306 * Version: 0x0064=100=1.0.0
307
308 * BAT: 0x0c78 = 3192 mV = 3.192V
309 * Singal: 0x17 = 23
310 * Soil Moisture: 0x075e= 1886 = 18.86  %
311 * Soil Temperature:0x0a8c =2700=27 °C
312 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 * Interrupt: 0x00 = 0
314
315
316 == 2.4  Payload Explanation and Sensor Interface ==
317
318
319 === 2.4.1  Device ID ===
320
321 By default, the Device ID equal to the last 6 bytes of IMEI.
322
323 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324
325 **Example:**
326
327 AT+DEUI=A84041F15612
328
329 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
330
331
332
333 === 2.4.2  Version Info ===
334
335 Specify the software version: 0x64=100, means firmware version 1.00.
336
337 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
338
339
340
341 === 2.4.3  Battery Info ===
342
343 (((
344 Check the battery voltage for LSE01.
345 )))
346
347 (((
348 Ex1: 0x0B45 = 2885mV
349 )))
350
351 (((
352 Ex2: 0x0B49 = 2889mV
353 )))
354
355
356
357 === 2.4.4  Signal Strength ===
358
359 NB-IoT Network signal Strength.
360
361 **Ex1: 0x1d = 29**
362
363 (% style="color:blue" %)**0**(%%)  -113dBm or less
364
365 (% style="color:blue" %)**1**(%%)  -111dBm
366
367 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
368
369 (% style="color:blue" %)**31**  (%%) -51dBm or greater
370
371 (% style="color:blue" %)**99**   (%%) Not known or not detectable
372
373
374
375 === 2.4.5  Soil Moisture ===
376
377 (((
378 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
379 )))
380
381 (((
382 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
383 )))
384
385 (((
386
387 )))
388
389 (((
390 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
391 )))
392
393
394
395 === 2.4.6  Soil Temperature ===
396
397 (((
398 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
399 )))
400
401 (((
402 **Example**:
403 )))
404
405 (((
406 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
407 )))
408
409 (((
410 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
411 )))
412
413
414
415 === 2.4.7  Soil Conductivity (EC) ===
416
417 (((
418 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
419 )))
420
421 (((
422 For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
423 )))
424
425 (((
426 Generally, the EC value of irrigation water is less than 800uS / cm.
427 )))
428
429 (((
430
431 )))
432
433 (((
434
435 )))
436
437 === 2.4.8  Digital Interrupt ===
438
439 Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
440
441 The command is:
442
443 (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
444
445
446 The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
447
448
449 Example:
450
451 0x(00): Normal uplink packet.
452
453 0x(01): Interrupt Uplink Packet.
454
455
456
457 === 2.4.9  ​+5V Output ===
458
459 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
460
461
462 The 5V output time can be controlled by AT Command.
463
464 (% style="color:blue" %)**AT+5VT=1000**
465
466 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
467
468
469
470 == 2.5  Downlink Payload ==
471
472 By default, LSE50 prints the downlink payload to console port.
473
474 [[image:image-20220708133731-5.png]]
475
476
477
478 (((
479 (% style="color:blue" %)**Examples:**
480 )))
481
482 (((
483
484 )))
485
486 * (((
487 (% style="color:blue" %)**Set TDC**
488 )))
489
490 (((
491 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
492 )))
493
494 (((
495 Payload:    01 00 00 1E    TDC=30S
496 )))
497
498 (((
499 Payload:    01 00 00 3C    TDC=60S
500 )))
501
502 (((
503
504 )))
505
506 * (((
507 (% style="color:blue" %)**Reset**
508 )))
509
510 (((
511 If payload = 0x04FF, it will reset the LSE01
512 )))
513
514
515 * (% style="color:blue" %)**CFM**
516
517 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
518
519
520
521 == 2.6 ​Show Data in DataCake IoT Server ==
522
523 (((
524 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
525 )))
526
527 (((
528
529 )))
530
531 (((
532 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
533 )))
534
535 (((
536 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
537 )))
538
539
540 [[image:1654505857935-743.png]]
541
542
543 [[image:1654505874829-548.png]]
544
545
546 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
547
548 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
549
550
551 [[image:1654505905236-553.png]]
552
553
554 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
555
556 [[image:1654505925508-181.png]]
557
558
559
560 == 2.7 Frequency Plans ==
561
562 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
563
564
565 === 2.7.1 EU863-870 (EU868) ===
566
567 (% style="color:#037691" %)** Uplink:**
568
569 868.1 - SF7BW125 to SF12BW125
570
571 868.3 - SF7BW125 to SF12BW125 and SF7BW250
572
573 868.5 - SF7BW125 to SF12BW125
574
575 867.1 - SF7BW125 to SF12BW125
576
577 867.3 - SF7BW125 to SF12BW125
578
579 867.5 - SF7BW125 to SF12BW125
580
581 867.7 - SF7BW125 to SF12BW125
582
583 867.9 - SF7BW125 to SF12BW125
584
585 868.8 - FSK
586
587
588 (% style="color:#037691" %)** Downlink:**
589
590 Uplink channels 1-9 (RX1)
591
592 869.525 - SF9BW125 (RX2 downlink only)
593
594
595
596 === 2.7.2 US902-928(US915) ===
597
598 Used in USA, Canada and South America. Default use CHE=2
599
600 (% style="color:#037691" %)**Uplink:**
601
602 903.9 - SF7BW125 to SF10BW125
603
604 904.1 - SF7BW125 to SF10BW125
605
606 904.3 - SF7BW125 to SF10BW125
607
608 904.5 - SF7BW125 to SF10BW125
609
610 904.7 - SF7BW125 to SF10BW125
611
612 904.9 - SF7BW125 to SF10BW125
613
614 905.1 - SF7BW125 to SF10BW125
615
616 905.3 - SF7BW125 to SF10BW125
617
618
619 (% style="color:#037691" %)**Downlink:**
620
621 923.3 - SF7BW500 to SF12BW500
622
623 923.9 - SF7BW500 to SF12BW500
624
625 924.5 - SF7BW500 to SF12BW500
626
627 925.1 - SF7BW500 to SF12BW500
628
629 925.7 - SF7BW500 to SF12BW500
630
631 926.3 - SF7BW500 to SF12BW500
632
633 926.9 - SF7BW500 to SF12BW500
634
635 927.5 - SF7BW500 to SF12BW500
636
637 923.3 - SF12BW500(RX2 downlink only)
638
639
640
641 === 2.7.3 CN470-510 (CN470) ===
642
643 Used in China, Default use CHE=1
644
645 (% style="color:#037691" %)**Uplink:**
646
647 486.3 - SF7BW125 to SF12BW125
648
649 486.5 - SF7BW125 to SF12BW125
650
651 486.7 - SF7BW125 to SF12BW125
652
653 486.9 - SF7BW125 to SF12BW125
654
655 487.1 - SF7BW125 to SF12BW125
656
657 487.3 - SF7BW125 to SF12BW125
658
659 487.5 - SF7BW125 to SF12BW125
660
661 487.7 - SF7BW125 to SF12BW125
662
663
664 (% style="color:#037691" %)**Downlink:**
665
666 506.7 - SF7BW125 to SF12BW125
667
668 506.9 - SF7BW125 to SF12BW125
669
670 507.1 - SF7BW125 to SF12BW125
671
672 507.3 - SF7BW125 to SF12BW125
673
674 507.5 - SF7BW125 to SF12BW125
675
676 507.7 - SF7BW125 to SF12BW125
677
678 507.9 - SF7BW125 to SF12BW125
679
680 508.1 - SF7BW125 to SF12BW125
681
682 505.3 - SF12BW125 (RX2 downlink only)
683
684
685
686 === 2.7.4 AU915-928(AU915) ===
687
688 Default use CHE=2
689
690 (% style="color:#037691" %)**Uplink:**
691
692 916.8 - SF7BW125 to SF12BW125
693
694 917.0 - SF7BW125 to SF12BW125
695
696 917.2 - SF7BW125 to SF12BW125
697
698 917.4 - SF7BW125 to SF12BW125
699
700 917.6 - SF7BW125 to SF12BW125
701
702 917.8 - SF7BW125 to SF12BW125
703
704 918.0 - SF7BW125 to SF12BW125
705
706 918.2 - SF7BW125 to SF12BW125
707
708
709 (% style="color:#037691" %)**Downlink:**
710
711 923.3 - SF7BW500 to SF12BW500
712
713 923.9 - SF7BW500 to SF12BW500
714
715 924.5 - SF7BW500 to SF12BW500
716
717 925.1 - SF7BW500 to SF12BW500
718
719 925.7 - SF7BW500 to SF12BW500
720
721 926.3 - SF7BW500 to SF12BW500
722
723 926.9 - SF7BW500 to SF12BW500
724
725 927.5 - SF7BW500 to SF12BW500
726
727 923.3 - SF12BW500(RX2 downlink only)
728
729
730
731 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
732
733 (% style="color:#037691" %)**Default Uplink channel:**
734
735 923.2 - SF7BW125 to SF10BW125
736
737 923.4 - SF7BW125 to SF10BW125
738
739
740 (% style="color:#037691" %)**Additional Uplink Channel**:
741
742 (OTAA mode, channel added by JoinAccept message)
743
744 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
745
746 922.2 - SF7BW125 to SF10BW125
747
748 922.4 - SF7BW125 to SF10BW125
749
750 922.6 - SF7BW125 to SF10BW125
751
752 922.8 - SF7BW125 to SF10BW125
753
754 923.0 - SF7BW125 to SF10BW125
755
756 922.0 - SF7BW125 to SF10BW125
757
758
759 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
760
761 923.6 - SF7BW125 to SF10BW125
762
763 923.8 - SF7BW125 to SF10BW125
764
765 924.0 - SF7BW125 to SF10BW125
766
767 924.2 - SF7BW125 to SF10BW125
768
769 924.4 - SF7BW125 to SF10BW125
770
771 924.6 - SF7BW125 to SF10BW125
772
773
774 (% style="color:#037691" %)** Downlink:**
775
776 Uplink channels 1-8 (RX1)
777
778 923.2 - SF10BW125 (RX2)
779
780
781
782 === 2.7.6 KR920-923 (KR920) ===
783
784 Default channel:
785
786 922.1 - SF7BW125 to SF12BW125
787
788 922.3 - SF7BW125 to SF12BW125
789
790 922.5 - SF7BW125 to SF12BW125
791
792
793 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
794
795 922.1 - SF7BW125 to SF12BW125
796
797 922.3 - SF7BW125 to SF12BW125
798
799 922.5 - SF7BW125 to SF12BW125
800
801 922.7 - SF7BW125 to SF12BW125
802
803 922.9 - SF7BW125 to SF12BW125
804
805 923.1 - SF7BW125 to SF12BW125
806
807 923.3 - SF7BW125 to SF12BW125
808
809
810 (% style="color:#037691" %)**Downlink:**
811
812 Uplink channels 1-7(RX1)
813
814 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
815
816
817
818 === 2.7.7 IN865-867 (IN865) ===
819
820 (% style="color:#037691" %)** Uplink:**
821
822 865.0625 - SF7BW125 to SF12BW125
823
824 865.4025 - SF7BW125 to SF12BW125
825
826 865.9850 - SF7BW125 to SF12BW125
827
828
829 (% style="color:#037691" %) **Downlink:**
830
831 Uplink channels 1-3 (RX1)
832
833 866.550 - SF10BW125 (RX2)
834
835
836
837
838 == 2.8 LED Indicator ==
839
840 The LSE01 has an internal LED which is to show the status of different state.
841
842 * Blink once when device power on.
843 * Solid ON for 5 seconds once device successful Join the network.
844 * Blink once when device transmit a packet.
845
846 == 2.9 Installation in Soil ==
847
848 **Measurement the soil surface**
849
850
851 [[image:1654506634463-199.png]] ​
852
853 (((
854 (((
855 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
856 )))
857 )))
858
859
860
861 [[image:1654506665940-119.png]]
862
863 (((
864 Dig a hole with diameter > 20CM.
865 )))
866
867 (((
868 Horizontal insert the probe to the soil and fill the hole for long term measurement.
869 )))
870
871
872 == 2.10 ​Firmware Change Log ==
873
874 (((
875 **Firmware download link:**
876 )))
877
878 (((
879 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
880 )))
881
882 (((
883
884 )))
885
886 (((
887 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
888 )))
889
890 (((
891
892 )))
893
894 (((
895 **V1.0.**
896 )))
897
898 (((
899 Release
900 )))
901
902
903 == 2.11 ​Battery Analysis ==
904
905 === 2.11.1 ​Battery Type ===
906
907 (((
908 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
909 )))
910
911 (((
912 The battery is designed to last for more than 5 years for the LSN50.
913 )))
914
915 (((
916 (((
917 The battery-related documents are as below:
918 )))
919 )))
920
921 * (((
922 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
923 )))
924 * (((
925 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
926 )))
927 * (((
928 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
929 )))
930
931 [[image:image-20220610172436-1.png]]
932
933
934
935 === 2.11.2 ​Battery Note ===
936
937 (((
938 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
939 )))
940
941
942
943 === 2.11.3 Replace the battery ===
944
945 (((
946 If Battery is lower than 2.7v, user should replace the battery of LSE01.
947 )))
948
949 (((
950 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
951 )))
952
953 (((
954 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
955 )))
956
957
958
959 = 3. ​Using the AT Commands =
960
961 == 3.1 Access AT Commands ==
962
963
964 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
965
966 [[image:1654501986557-872.png||height="391" width="800"]]
967
968
969 Or if you have below board, use below connection:
970
971
972 [[image:1654502005655-729.png||height="503" width="801"]]
973
974
975
976 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
977
978
979 [[image:1654502050864-459.png||height="564" width="806"]]
980
981
982 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
983
984
985 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
986
987 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
988
989 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
990
991 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
992
993
994 (% style="color:#037691" %)**General Commands**(%%)      
995
996 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
997
998 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
999
1000 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
1001
1002 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
1003
1004
1005 (% style="color:#037691" %)**Keys, IDs and EUIs management**
1006
1007 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
1008
1009 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
1010
1011 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
1012
1013 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1014
1015 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1016
1017 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1018
1019 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1020
1021 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1022
1023 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1024
1025 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1026
1027 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1028
1029 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1030
1031 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1032
1033 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1034
1035 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1036
1037 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1038
1039
1040 (% style="color:#037691" %)**LoRa Network Management**
1041
1042 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1043
1044 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1045
1046 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1047
1048 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1049
1050 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1051
1052 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1053
1054 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1055
1056 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1057
1058 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1059
1060 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1061
1062 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1063
1064 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1065
1066 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1067
1068 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1069
1070 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1071
1072
1073 (% style="color:#037691" %)**Information** 
1074
1075 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1076
1077 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1078
1079 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1080
1081 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1082
1083 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1084
1085 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1086
1087 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1088
1089
1090 = ​4. FAQ =
1091
1092 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1093
1094 (((
1095 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1096 When downloading the images, choose the required image file for download. ​
1097 )))
1098
1099 (((
1100
1101 )))
1102
1103 (((
1104 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1105 )))
1106
1107 (((
1108
1109 )))
1110
1111 (((
1112 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1113 )))
1114
1115 (((
1116
1117 )))
1118
1119 (((
1120 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1121 )))
1122
1123 [[image:image-20220606154726-3.png]]
1124
1125
1126 When you use the TTN network, the US915 frequency bands use are:
1127
1128 * 903.9 - SF7BW125 to SF10BW125
1129 * 904.1 - SF7BW125 to SF10BW125
1130 * 904.3 - SF7BW125 to SF10BW125
1131 * 904.5 - SF7BW125 to SF10BW125
1132 * 904.7 - SF7BW125 to SF10BW125
1133 * 904.9 - SF7BW125 to SF10BW125
1134 * 905.1 - SF7BW125 to SF10BW125
1135 * 905.3 - SF7BW125 to SF10BW125
1136 * 904.6 - SF8BW500
1137
1138 (((
1139 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1140
1141 * (% style="color:#037691" %)**AT+CHE=2**
1142 * (% style="color:#037691" %)**ATZ**
1143 )))
1144
1145 (((
1146
1147
1148 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1149 )))
1150
1151 (((
1152
1153 )))
1154
1155 (((
1156 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1157 )))
1158
1159 [[image:image-20220606154825-4.png]]
1160
1161
1162 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1163
1164 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1165
1166
1167 = 5. Trouble Shooting =
1168
1169 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1170
1171 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1172
1173
1174 == 5.2 AT Command input doesn't work ==
1175
1176 (((
1177 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1178 )))
1179
1180
1181 == 5.3 Device rejoin in at the second uplink packet ==
1182
1183 (% style="color:#4f81bd" %)**Issue describe as below:**
1184
1185 [[image:1654500909990-784.png]]
1186
1187
1188 (% style="color:#4f81bd" %)**Cause for this issue:**
1189
1190 (((
1191 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1192 )))
1193
1194
1195 (% style="color:#4f81bd" %)**Solution: **
1196
1197 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1198
1199 [[image:1654500929571-736.png||height="458" width="832"]]
1200
1201
1202 = 6. ​Order Info =
1203
1204
1205 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1206
1207
1208 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1209
1210 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1211 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1212 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1213 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1214 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1215 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1216 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1217 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1218
1219 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1220
1221 * (% style="color:red" %)**4**(%%): 4000mAh battery
1222 * (% style="color:red" %)**8**(%%): 8500mAh battery
1223
1224 (% class="wikigeneratedid" %)
1225 (((
1226
1227 )))
1228
1229 = 7. Packing Info =
1230
1231 (((
1232
1233
1234 (% style="color:#037691" %)**Package Includes**:
1235 )))
1236
1237 * (((
1238 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1239 )))
1240
1241 (((
1242
1243
1244 (% style="color:#037691" %)**Dimension and weight**:
1245 )))
1246
1247 * (((
1248 Device Size: cm
1249 )))
1250 * (((
1251 Device Weight: g
1252 )))
1253 * (((
1254 Package Size / pcs : cm
1255 )))
1256 * (((
1257 Weight / pcs : g
1258
1259
1260 )))
1261
1262 = 8. Support =
1263
1264 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1265 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0