Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud: (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity: (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203
204 For parameter description, please refer to AT command set
205
206 [[image:1657249793983-486.png]]
207
208
209 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210
211 [[image:1657249831934-534.png]]
212
213
214
215 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216
217
218 This feature is supported since firmware version v1.0.1
219
220
221 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
222 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
223 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
224
225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
226
227
228
229
230
231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
232
233
234 === 2.2.6 Use MQTT protocol to uplink data ===
235
236
237 This feature is supported since firmware version v110
238
239
240 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 * (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
244 * (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
245 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
246 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
247
248 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
249
250 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
251
252
253 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
254
255
256 === 2.2.7 Use TCP protocol to uplink data ===
257
258
259 This feature is supported since firmware version v110
260
261
262 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
263 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
264
265 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
266
267
268
269 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
270
271
272 === 2.2.8 Change Update Interval ===
273
274 User can use below command to change the (% style="color:green" %)**uplink interval**.
275
276 **~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
277
278
279 (% style="color:red" %)**NOTE:**
280
281 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
282
283
284
285
286
287
288
289 == 2.3 Uplink Payload ==
290
291
292 === 2.3.1 MOD~=0(Default Mode) ===
293
294 LSE01 will uplink payload via LoRaWAN with below payload format: 
295
296 (((
297 Uplink payload includes in total 11 bytes.
298 )))
299
300 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
301 |(((
302 **Size**
303
304 **(bytes)**
305 )))|**2**|**2**|**2**|**2**|**2**|**1**
306 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
307 Temperature
308
309 (Reserve, Ignore now)
310 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
311 MOD & Digital Interrupt
312
313 (Optional)
314 )))
315
316 === 2.3.2 MOD~=1(Original value) ===
317
318 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
321 |(((
322 **Size**
323
324 **(bytes)**
325 )))|**2**|**2**|**2**|**2**|**2**|**1**
326 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
327 Temperature
328
329 (Reserve, Ignore now)
330 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
331 MOD & Digital Interrupt
332
333 (Optional)
334 )))
335
336 === 2.3.3 Battery Info ===
337
338 (((
339 Check the battery voltage for LSE01.
340 )))
341
342 (((
343 Ex1: 0x0B45 = 2885mV
344 )))
345
346 (((
347 Ex2: 0x0B49 = 2889mV
348 )))
349
350
351
352 === 2.3.4 Soil Moisture ===
353
354 (((
355 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
356 )))
357
358 (((
359 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
360 )))
361
362 (((
363
364 )))
365
366 (((
367 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
368 )))
369
370
371
372 === 2.3.5 Soil Temperature ===
373
374 (((
375 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
376 )))
377
378 (((
379 **Example**:
380 )))
381
382 (((
383 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
384 )))
385
386 (((
387 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
388 )))
389
390
391
392 === 2.3.6 Soil Conductivity (EC) ===
393
394 (((
395 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
396 )))
397
398 (((
399 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
400 )))
401
402 (((
403 Generally, the EC value of irrigation water is less than 800uS / cm.
404 )))
405
406 (((
407
408 )))
409
410 (((
411
412 )))
413
414 === 2.3.7 MOD ===
415
416 Firmware version at least v2.1 supports changing mode.
417
418 For example, bytes[10]=90
419
420 mod=(bytes[10]>>7)&0x01=1.
421
422
423 **Downlink Command:**
424
425 If payload = 0x0A00, workmode=0
426
427 If** **payload =** **0x0A01, workmode=1
428
429
430
431 === 2.3.8 ​Decode payload in The Things Network ===
432
433 While using TTN network, you can add the payload format to decode the payload.
434
435
436 [[image:1654505570700-128.png]]
437
438 (((
439 The payload decoder function for TTN is here:
440 )))
441
442 (((
443 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
444 )))
445
446
447 == 2.4 Uplink Interval ==
448
449 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
450
451
452
453 == 2.5 Downlink Payload ==
454
455 By default, LSE50 prints the downlink payload to console port.
456
457 [[image:image-20220606165544-8.png]]
458
459
460 (((
461 (% style="color:blue" %)**Examples:**
462 )))
463
464 (((
465
466 )))
467
468 * (((
469 (% style="color:blue" %)**Set TDC**
470 )))
471
472 (((
473 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
474 )))
475
476 (((
477 Payload:    01 00 00 1E    TDC=30S
478 )))
479
480 (((
481 Payload:    01 00 00 3C    TDC=60S
482 )))
483
484 (((
485
486 )))
487
488 * (((
489 (% style="color:blue" %)**Reset**
490 )))
491
492 (((
493 If payload = 0x04FF, it will reset the LSE01
494 )))
495
496
497 * (% style="color:blue" %)**CFM**
498
499 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
500
501
502
503 == 2.6 ​Show Data in DataCake IoT Server ==
504
505 (((
506 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
507 )))
508
509 (((
510
511 )))
512
513 (((
514 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
515 )))
516
517 (((
518 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
519 )))
520
521
522 [[image:1654505857935-743.png]]
523
524
525 [[image:1654505874829-548.png]]
526
527
528 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
529
530 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
531
532
533 [[image:1654505905236-553.png]]
534
535
536 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
537
538 [[image:1654505925508-181.png]]
539
540
541
542 == 2.7 Frequency Plans ==
543
544 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
545
546
547 === 2.7.1 EU863-870 (EU868) ===
548
549 (% style="color:#037691" %)** Uplink:**
550
551 868.1 - SF7BW125 to SF12BW125
552
553 868.3 - SF7BW125 to SF12BW125 and SF7BW250
554
555 868.5 - SF7BW125 to SF12BW125
556
557 867.1 - SF7BW125 to SF12BW125
558
559 867.3 - SF7BW125 to SF12BW125
560
561 867.5 - SF7BW125 to SF12BW125
562
563 867.7 - SF7BW125 to SF12BW125
564
565 867.9 - SF7BW125 to SF12BW125
566
567 868.8 - FSK
568
569
570 (% style="color:#037691" %)** Downlink:**
571
572 Uplink channels 1-9 (RX1)
573
574 869.525 - SF9BW125 (RX2 downlink only)
575
576
577
578 === 2.7.2 US902-928(US915) ===
579
580 Used in USA, Canada and South America. Default use CHE=2
581
582 (% style="color:#037691" %)**Uplink:**
583
584 903.9 - SF7BW125 to SF10BW125
585
586 904.1 - SF7BW125 to SF10BW125
587
588 904.3 - SF7BW125 to SF10BW125
589
590 904.5 - SF7BW125 to SF10BW125
591
592 904.7 - SF7BW125 to SF10BW125
593
594 904.9 - SF7BW125 to SF10BW125
595
596 905.1 - SF7BW125 to SF10BW125
597
598 905.3 - SF7BW125 to SF10BW125
599
600
601 (% style="color:#037691" %)**Downlink:**
602
603 923.3 - SF7BW500 to SF12BW500
604
605 923.9 - SF7BW500 to SF12BW500
606
607 924.5 - SF7BW500 to SF12BW500
608
609 925.1 - SF7BW500 to SF12BW500
610
611 925.7 - SF7BW500 to SF12BW500
612
613 926.3 - SF7BW500 to SF12BW500
614
615 926.9 - SF7BW500 to SF12BW500
616
617 927.5 - SF7BW500 to SF12BW500
618
619 923.3 - SF12BW500(RX2 downlink only)
620
621
622
623 === 2.7.3 CN470-510 (CN470) ===
624
625 Used in China, Default use CHE=1
626
627 (% style="color:#037691" %)**Uplink:**
628
629 486.3 - SF7BW125 to SF12BW125
630
631 486.5 - SF7BW125 to SF12BW125
632
633 486.7 - SF7BW125 to SF12BW125
634
635 486.9 - SF7BW125 to SF12BW125
636
637 487.1 - SF7BW125 to SF12BW125
638
639 487.3 - SF7BW125 to SF12BW125
640
641 487.5 - SF7BW125 to SF12BW125
642
643 487.7 - SF7BW125 to SF12BW125
644
645
646 (% style="color:#037691" %)**Downlink:**
647
648 506.7 - SF7BW125 to SF12BW125
649
650 506.9 - SF7BW125 to SF12BW125
651
652 507.1 - SF7BW125 to SF12BW125
653
654 507.3 - SF7BW125 to SF12BW125
655
656 507.5 - SF7BW125 to SF12BW125
657
658 507.7 - SF7BW125 to SF12BW125
659
660 507.9 - SF7BW125 to SF12BW125
661
662 508.1 - SF7BW125 to SF12BW125
663
664 505.3 - SF12BW125 (RX2 downlink only)
665
666
667
668 === 2.7.4 AU915-928(AU915) ===
669
670 Default use CHE=2
671
672 (% style="color:#037691" %)**Uplink:**
673
674 916.8 - SF7BW125 to SF12BW125
675
676 917.0 - SF7BW125 to SF12BW125
677
678 917.2 - SF7BW125 to SF12BW125
679
680 917.4 - SF7BW125 to SF12BW125
681
682 917.6 - SF7BW125 to SF12BW125
683
684 917.8 - SF7BW125 to SF12BW125
685
686 918.0 - SF7BW125 to SF12BW125
687
688 918.2 - SF7BW125 to SF12BW125
689
690
691 (% style="color:#037691" %)**Downlink:**
692
693 923.3 - SF7BW500 to SF12BW500
694
695 923.9 - SF7BW500 to SF12BW500
696
697 924.5 - SF7BW500 to SF12BW500
698
699 925.1 - SF7BW500 to SF12BW500
700
701 925.7 - SF7BW500 to SF12BW500
702
703 926.3 - SF7BW500 to SF12BW500
704
705 926.9 - SF7BW500 to SF12BW500
706
707 927.5 - SF7BW500 to SF12BW500
708
709 923.3 - SF12BW500(RX2 downlink only)
710
711
712
713 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
714
715 (% style="color:#037691" %)**Default Uplink channel:**
716
717 923.2 - SF7BW125 to SF10BW125
718
719 923.4 - SF7BW125 to SF10BW125
720
721
722 (% style="color:#037691" %)**Additional Uplink Channel**:
723
724 (OTAA mode, channel added by JoinAccept message)
725
726 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
727
728 922.2 - SF7BW125 to SF10BW125
729
730 922.4 - SF7BW125 to SF10BW125
731
732 922.6 - SF7BW125 to SF10BW125
733
734 922.8 - SF7BW125 to SF10BW125
735
736 923.0 - SF7BW125 to SF10BW125
737
738 922.0 - SF7BW125 to SF10BW125
739
740
741 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
742
743 923.6 - SF7BW125 to SF10BW125
744
745 923.8 - SF7BW125 to SF10BW125
746
747 924.0 - SF7BW125 to SF10BW125
748
749 924.2 - SF7BW125 to SF10BW125
750
751 924.4 - SF7BW125 to SF10BW125
752
753 924.6 - SF7BW125 to SF10BW125
754
755
756 (% style="color:#037691" %)** Downlink:**
757
758 Uplink channels 1-8 (RX1)
759
760 923.2 - SF10BW125 (RX2)
761
762
763
764 === 2.7.6 KR920-923 (KR920) ===
765
766 Default channel:
767
768 922.1 - SF7BW125 to SF12BW125
769
770 922.3 - SF7BW125 to SF12BW125
771
772 922.5 - SF7BW125 to SF12BW125
773
774
775 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
776
777 922.1 - SF7BW125 to SF12BW125
778
779 922.3 - SF7BW125 to SF12BW125
780
781 922.5 - SF7BW125 to SF12BW125
782
783 922.7 - SF7BW125 to SF12BW125
784
785 922.9 - SF7BW125 to SF12BW125
786
787 923.1 - SF7BW125 to SF12BW125
788
789 923.3 - SF7BW125 to SF12BW125
790
791
792 (% style="color:#037691" %)**Downlink:**
793
794 Uplink channels 1-7(RX1)
795
796 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
797
798
799
800 === 2.7.7 IN865-867 (IN865) ===
801
802 (% style="color:#037691" %)** Uplink:**
803
804 865.0625 - SF7BW125 to SF12BW125
805
806 865.4025 - SF7BW125 to SF12BW125
807
808 865.9850 - SF7BW125 to SF12BW125
809
810
811 (% style="color:#037691" %) **Downlink:**
812
813 Uplink channels 1-3 (RX1)
814
815 866.550 - SF10BW125 (RX2)
816
817
818
819
820 == 2.8 LED Indicator ==
821
822 The LSE01 has an internal LED which is to show the status of different state.
823
824 * Blink once when device power on.
825 * Solid ON for 5 seconds once device successful Join the network.
826 * Blink once when device transmit a packet.
827
828 == 2.9 Installation in Soil ==
829
830 **Measurement the soil surface**
831
832
833 [[image:1654506634463-199.png]] ​
834
835 (((
836 (((
837 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
838 )))
839 )))
840
841
842
843 [[image:1654506665940-119.png]]
844
845 (((
846 Dig a hole with diameter > 20CM.
847 )))
848
849 (((
850 Horizontal insert the probe to the soil and fill the hole for long term measurement.
851 )))
852
853
854 == 2.10 ​Firmware Change Log ==
855
856 (((
857 **Firmware download link:**
858 )))
859
860 (((
861 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
862 )))
863
864 (((
865
866 )))
867
868 (((
869 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
870 )))
871
872 (((
873
874 )))
875
876 (((
877 **V1.0.**
878 )))
879
880 (((
881 Release
882 )))
883
884
885 == 2.11 ​Battery Analysis ==
886
887 === 2.11.1 ​Battery Type ===
888
889 (((
890 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
891 )))
892
893 (((
894 The battery is designed to last for more than 5 years for the LSN50.
895 )))
896
897 (((
898 (((
899 The battery-related documents are as below:
900 )))
901 )))
902
903 * (((
904 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
905 )))
906 * (((
907 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
908 )))
909 * (((
910 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
911 )))
912
913 [[image:image-20220610172436-1.png]]
914
915
916
917 === 2.11.2 ​Battery Note ===
918
919 (((
920 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
921 )))
922
923
924
925 === 2.11.3 Replace the battery ===
926
927 (((
928 If Battery is lower than 2.7v, user should replace the battery of LSE01.
929 )))
930
931 (((
932 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
933 )))
934
935 (((
936 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
937 )))
938
939
940
941 = 3. ​Using the AT Commands =
942
943 == 3.1 Access AT Commands ==
944
945
946 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
947
948 [[image:1654501986557-872.png||height="391" width="800"]]
949
950
951 Or if you have below board, use below connection:
952
953
954 [[image:1654502005655-729.png||height="503" width="801"]]
955
956
957
958 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
959
960
961 [[image:1654502050864-459.png||height="564" width="806"]]
962
963
964 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
965
966
967 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
968
969 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
970
971 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
972
973 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
974
975
976 (% style="color:#037691" %)**General Commands**(%%)      
977
978 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
979
980 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
981
982 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
983
984 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
985
986
987 (% style="color:#037691" %)**Keys, IDs and EUIs management**
988
989 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
990
991 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
992
993 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
994
995 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
996
997 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
998
999 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1000
1001 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1002
1003 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1004
1005 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1006
1007 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1008
1009 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1010
1011 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1012
1013 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1014
1015 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1016
1017 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1018
1019 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1020
1021
1022 (% style="color:#037691" %)**LoRa Network Management**
1023
1024 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1025
1026 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1027
1028 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1029
1030 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1031
1032 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1033
1034 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1035
1036 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1037
1038 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1039
1040 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1041
1042 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1043
1044 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1045
1046 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1047
1048 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1049
1050 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1051
1052 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1053
1054
1055 (% style="color:#037691" %)**Information** 
1056
1057 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1058
1059 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1060
1061 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1062
1063 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1064
1065 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1066
1067 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1068
1069 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1070
1071
1072 = ​4. FAQ =
1073
1074 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1075
1076 (((
1077 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1078 When downloading the images, choose the required image file for download. ​
1079 )))
1080
1081 (((
1082
1083 )))
1084
1085 (((
1086 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1087 )))
1088
1089 (((
1090
1091 )))
1092
1093 (((
1094 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1095 )))
1096
1097 (((
1098
1099 )))
1100
1101 (((
1102 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1103 )))
1104
1105 [[image:image-20220606154726-3.png]]
1106
1107
1108 When you use the TTN network, the US915 frequency bands use are:
1109
1110 * 903.9 - SF7BW125 to SF10BW125
1111 * 904.1 - SF7BW125 to SF10BW125
1112 * 904.3 - SF7BW125 to SF10BW125
1113 * 904.5 - SF7BW125 to SF10BW125
1114 * 904.7 - SF7BW125 to SF10BW125
1115 * 904.9 - SF7BW125 to SF10BW125
1116 * 905.1 - SF7BW125 to SF10BW125
1117 * 905.3 - SF7BW125 to SF10BW125
1118 * 904.6 - SF8BW500
1119
1120 (((
1121 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1122
1123 * (% style="color:#037691" %)**AT+CHE=2**
1124 * (% style="color:#037691" %)**ATZ**
1125 )))
1126
1127 (((
1128
1129
1130 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1131 )))
1132
1133 (((
1134
1135 )))
1136
1137 (((
1138 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1139 )))
1140
1141 [[image:image-20220606154825-4.png]]
1142
1143
1144 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1145
1146 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1147
1148
1149 = 5. Trouble Shooting =
1150
1151 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1152
1153 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1154
1155
1156 == 5.2 AT Command input doesn't work ==
1157
1158 (((
1159 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1160 )))
1161
1162
1163 == 5.3 Device rejoin in at the second uplink packet ==
1164
1165 (% style="color:#4f81bd" %)**Issue describe as below:**
1166
1167 [[image:1654500909990-784.png]]
1168
1169
1170 (% style="color:#4f81bd" %)**Cause for this issue:**
1171
1172 (((
1173 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1174 )))
1175
1176
1177 (% style="color:#4f81bd" %)**Solution: **
1178
1179 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1180
1181 [[image:1654500929571-736.png||height="458" width="832"]]
1182
1183
1184 = 6. ​Order Info =
1185
1186
1187 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1188
1189
1190 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1191
1192 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1193 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1194 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1195 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1196 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1197 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1198 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1199 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1200
1201 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1202
1203 * (% style="color:red" %)**4**(%%): 4000mAh battery
1204 * (% style="color:red" %)**8**(%%): 8500mAh battery
1205
1206 (% class="wikigeneratedid" %)
1207 (((
1208
1209 )))
1210
1211 = 7. Packing Info =
1212
1213 (((
1214
1215
1216 (% style="color:#037691" %)**Package Includes**:
1217 )))
1218
1219 * (((
1220 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1221 )))
1222
1223 (((
1224
1225
1226 (% style="color:#037691" %)**Dimension and weight**:
1227 )))
1228
1229 * (((
1230 Device Size: cm
1231 )))
1232 * (((
1233 Device Weight: g
1234 )))
1235 * (((
1236 Package Size / pcs : cm
1237 )))
1238 * (((
1239 Weight / pcs : g
1240
1241
1242 )))
1243
1244 = 8. Support =
1245
1246 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1247 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0