Wiki source code of NDDS75 NB-IoT Distance Detect Sensor User Manual
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | [[image:image-20220709084207-3.jpeg||height="548" width="548"]] | ||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | **Table of Contents:** | ||
10 | |||
11 | |||
12 | |||
13 | |||
14 | |||
15 | |||
16 | |||
17 | = 1. Introduction = | ||
18 | |||
19 | == 1.1 What is NDDS75 Distance Detection Sensor == | ||
20 | |||
21 | ((( | ||
22 | |||
23 | |||
24 | ((( | ||
25 | The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. | ||
26 | \\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. | ||
27 | \\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. | ||
28 | \\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. | ||
29 | \\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) | ||
30 | \\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. | ||
31 | ))) | ||
32 | |||
33 | |||
34 | ))) | ||
35 | |||
36 | [[image:1654503236291-817.png]] | ||
37 | |||
38 | |||
39 | [[image:1657245163077-232.png]] | ||
40 | |||
41 | |||
42 | |||
43 | == 1.2 Features == | ||
44 | |||
45 | * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD | ||
46 | * Monitor Soil Moisture | ||
47 | * Monitor Soil Temperature | ||
48 | * Monitor Soil Conductivity | ||
49 | * AT Commands to change parameters | ||
50 | * Uplink on periodically | ||
51 | * Downlink to change configure | ||
52 | * IP66 Waterproof Enclosure | ||
53 | * Ultra-Low Power consumption | ||
54 | * AT Commands to change parameters | ||
55 | * Micro SIM card slot for NB-IoT SIM | ||
56 | * 8500mAh Battery for long term use | ||
57 | |||
58 | == 1.3 Specification == | ||
59 | |||
60 | |||
61 | (% style="color:#037691" %)**Common DC Characteristics:** | ||
62 | |||
63 | * Supply Voltage: 2.1v ~~ 3.6v | ||
64 | * Operating Temperature: -40 ~~ 85°C | ||
65 | |||
66 | (% style="color:#037691" %)**NB-IoT Spec:** | ||
67 | |||
68 | * - B1 @H-FDD: 2100MHz | ||
69 | * - B3 @H-FDD: 1800MHz | ||
70 | * - B8 @H-FDD: 900MHz | ||
71 | * - B5 @H-FDD: 850MHz | ||
72 | * - B20 @H-FDD: 800MHz | ||
73 | * - B28 @H-FDD: 700MHz | ||
74 | |||
75 | Probe(% style="color:#037691" %)** Specification:** | ||
76 | |||
77 | Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. | ||
78 | |||
79 | [[image:image-20220708101224-1.png]] | ||
80 | |||
81 | |||
82 | |||
83 | == 1.4 Applications == | ||
84 | |||
85 | * Smart Agriculture | ||
86 | |||
87 | (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) | ||
88 | | ||
89 | |||
90 | == 1.5 Pin Definitions == | ||
91 | |||
92 | |||
93 | [[image:1657246476176-652.png]] | ||
94 | |||
95 | |||
96 | |||
97 | = 2. Use NSE01 to communicate with IoT Server = | ||
98 | |||
99 | == 2.1 How it works == | ||
100 | |||
101 | |||
102 | ((( | ||
103 | The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. | ||
104 | ))) | ||
105 | |||
106 | |||
107 | ((( | ||
108 | The diagram below shows the working flow in default firmware of NSE01: | ||
109 | ))) | ||
110 | |||
111 | [[image:image-20220708101605-2.png]] | ||
112 | |||
113 | ((( | ||
114 | |||
115 | ))) | ||
116 | |||
117 | |||
118 | |||
119 | == 2.2 Configure the NSE01 == | ||
120 | |||
121 | |||
122 | === 2.2.1 Test Requirement === | ||
123 | |||
124 | |||
125 | ((( | ||
126 | To use NSE01 in your city, make sure meet below requirements: | ||
127 | ))) | ||
128 | |||
129 | * Your local operator has already distributed a NB-IoT Network there. | ||
130 | * The local NB-IoT network used the band that NSE01 supports. | ||
131 | * Your operator is able to distribute the data received in their NB-IoT network to your IoT server. | ||
132 | |||
133 | ((( | ||
134 | Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server | ||
135 | ))) | ||
136 | |||
137 | |||
138 | [[image:1657249419225-449.png]] | ||
139 | |||
140 | |||
141 | |||
142 | === 2.2.2 Insert SIM card === | ||
143 | |||
144 | ((( | ||
145 | Insert the NB-IoT Card get from your provider. | ||
146 | ))) | ||
147 | |||
148 | ((( | ||
149 | User need to take out the NB-IoT module and insert the SIM card like below: | ||
150 | ))) | ||
151 | |||
152 | |||
153 | [[image:1657249468462-536.png]] | ||
154 | |||
155 | |||
156 | |||
157 | === 2.2.3 Connect USB – TTL to NSE01 to configure it === | ||
158 | |||
159 | ((( | ||
160 | ((( | ||
161 | User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. | ||
162 | ))) | ||
163 | ))) | ||
164 | |||
165 | |||
166 | **Connection:** | ||
167 | |||
168 | (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND | ||
169 | |||
170 | (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD | ||
171 | |||
172 | (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD | ||
173 | |||
174 | |||
175 | In the PC, use below serial tool settings: | ||
176 | |||
177 | * Baud: (% style="color:green" %)**9600** | ||
178 | * Data bits:** (% style="color:green" %)8(%%)** | ||
179 | * Stop bits: (% style="color:green" %)**1** | ||
180 | * Parity: (% style="color:green" %)**None** | ||
181 | * Flow Control: (% style="color:green" %)**None** | ||
182 | |||
183 | ((( | ||
184 | Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. | ||
185 | ))) | ||
186 | |||
187 | [[image:image-20220708110657-3.png]] | ||
188 | |||
189 | ((( | ||
190 | (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] | ||
191 | ))) | ||
192 | |||
193 | |||
194 | |||
195 | === 2.2.4 Use CoAP protocol to uplink data === | ||
196 | |||
197 | (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] | ||
198 | |||
199 | |||
200 | **Use below commands:** | ||
201 | |||
202 | * (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink | ||
203 | * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port | ||
204 | * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path | ||
205 | |||
206 | For parameter description, please refer to AT command set | ||
207 | |||
208 | [[image:1657249793983-486.png]] | ||
209 | |||
210 | |||
211 | After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. | ||
212 | |||
213 | [[image:1657249831934-534.png]] | ||
214 | |||
215 | |||
216 | |||
217 | === 2.2.5 Use UDP protocol to uplink data(Default protocol) === | ||
218 | |||
219 | This feature is supported since firmware version v1.0.1 | ||
220 | |||
221 | |||
222 | * (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink | ||
223 | * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port | ||
224 | * (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary | ||
225 | |||
226 | [[image:1657249864775-321.png]] | ||
227 | |||
228 | |||
229 | [[image:1657249930215-289.png]] | ||
230 | |||
231 | |||
232 | |||
233 | === 2.2.6 Use MQTT protocol to uplink data === | ||
234 | |||
235 | This feature is supported since firmware version v110 | ||
236 | |||
237 | |||
238 | * (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink | ||
239 | * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port | ||
240 | * (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT | ||
241 | * (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT | ||
242 | * (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT | ||
243 | * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT | ||
244 | * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT | ||
245 | |||
246 | [[image:1657249978444-674.png]] | ||
247 | |||
248 | |||
249 | [[image:1657249990869-686.png]] | ||
250 | |||
251 | |||
252 | ((( | ||
253 | MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. | ||
254 | ))) | ||
255 | |||
256 | |||
257 | |||
258 | === 2.2.7 Use TCP protocol to uplink data === | ||
259 | |||
260 | This feature is supported since firmware version v110 | ||
261 | |||
262 | |||
263 | * (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink | ||
264 | * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port | ||
265 | |||
266 | [[image:1657250217799-140.png]] | ||
267 | |||
268 | |||
269 | [[image:1657250255956-604.png]] | ||
270 | |||
271 | |||
272 | |||
273 | === 2.2.8 Change Update Interval === | ||
274 | |||
275 | User can use below command to change the (% style="color:green" %)**uplink interval**. | ||
276 | |||
277 | * (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s | ||
278 | |||
279 | ((( | ||
280 | (% style="color:red" %)**NOTE:** | ||
281 | ))) | ||
282 | |||
283 | ((( | ||
284 | (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. | ||
285 | ))) | ||
286 | |||
287 | |||
288 | |||
289 | == 2.3 Uplink Payload == | ||
290 | |||
291 | In this mode, uplink payload includes in total 18 bytes | ||
292 | |||
293 | (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) | ||
294 | |=(% style="width: 60px;" %)((( | ||
295 | **Size(bytes)** | ||
296 | )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** | ||
297 | |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] | ||
298 | |||
299 | ((( | ||
300 | If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. | ||
301 | ))) | ||
302 | |||
303 | |||
304 | [[image:image-20220708111918-4.png]] | ||
305 | |||
306 | |||
307 | The payload is ASCII string, representative same HEX: | ||
308 | |||
309 | 0x72403155615900640c7817075e0a8c02f900 where: | ||
310 | |||
311 | * Device ID: 0x 724031556159 = 724031556159 | ||
312 | * Version: 0x0064=100=1.0.0 | ||
313 | |||
314 | * BAT: 0x0c78 = 3192 mV = 3.192V | ||
315 | * Singal: 0x17 = 23 | ||
316 | * Soil Moisture: 0x075e= 1886 = 18.86 % | ||
317 | * Soil Temperature:0x0a8c =2700=27 °C | ||
318 | * Soil Conductivity(EC) = 0x02f9 =761 uS /cm | ||
319 | * Interrupt: 0x00 = 0 | ||
320 | |||
321 | == 2.4 Payload Explanation and Sensor Interface == | ||
322 | |||
323 | |||
324 | === 2.4.1 Device ID === | ||
325 | |||
326 | ((( | ||
327 | By default, the Device ID equal to the last 6 bytes of IMEI. | ||
328 | ))) | ||
329 | |||
330 | ((( | ||
331 | User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID | ||
332 | ))) | ||
333 | |||
334 | ((( | ||
335 | **Example:** | ||
336 | ))) | ||
337 | |||
338 | ((( | ||
339 | AT+DEUI=A84041F15612 | ||
340 | ))) | ||
341 | |||
342 | ((( | ||
343 | The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. | ||
344 | ))) | ||
345 | |||
346 | |||
347 | |||
348 | === 2.4.2 Version Info === | ||
349 | |||
350 | ((( | ||
351 | Specify the software version: 0x64=100, means firmware version 1.00. | ||
352 | ))) | ||
353 | |||
354 | ((( | ||
355 | For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. | ||
356 | ))) | ||
357 | |||
358 | |||
359 | |||
360 | === 2.4.3 Battery Info === | ||
361 | |||
362 | ((( | ||
363 | Check the battery voltage for LSE01. | ||
364 | ))) | ||
365 | |||
366 | ((( | ||
367 | Ex1: 0x0B45 = 2885mV | ||
368 | ))) | ||
369 | |||
370 | ((( | ||
371 | Ex2: 0x0B49 = 2889mV | ||
372 | ))) | ||
373 | |||
374 | |||
375 | |||
376 | === 2.4.4 Signal Strength === | ||
377 | |||
378 | ((( | ||
379 | NB-IoT Network signal Strength. | ||
380 | ))) | ||
381 | |||
382 | ((( | ||
383 | **Ex1: 0x1d = 29** | ||
384 | ))) | ||
385 | |||
386 | ((( | ||
387 | (% style="color:blue" %)**0**(%%) -113dBm or less | ||
388 | ))) | ||
389 | |||
390 | ((( | ||
391 | (% style="color:blue" %)**1**(%%) -111dBm | ||
392 | ))) | ||
393 | |||
394 | ((( | ||
395 | (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm | ||
396 | ))) | ||
397 | |||
398 | ((( | ||
399 | (% style="color:blue" %)**31** (%%) -51dBm or greater | ||
400 | ))) | ||
401 | |||
402 | ((( | ||
403 | (% style="color:blue" %)**99** (%%) Not known or not detectable | ||
404 | ))) | ||
405 | |||
406 | |||
407 | |||
408 | === 2.4.5 Soil Moisture === | ||
409 | |||
410 | ((( | ||
411 | ((( | ||
412 | Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. | ||
413 | ))) | ||
414 | ))) | ||
415 | |||
416 | ((( | ||
417 | ((( | ||
418 | For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is | ||
419 | ))) | ||
420 | ))) | ||
421 | |||
422 | ((( | ||
423 | |||
424 | ))) | ||
425 | |||
426 | ((( | ||
427 | (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** | ||
428 | ))) | ||
429 | |||
430 | |||
431 | |||
432 | === 2.4.6 Soil Temperature === | ||
433 | |||
434 | ((( | ||
435 | Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is | ||
436 | ))) | ||
437 | |||
438 | ((( | ||
439 | **Example**: | ||
440 | ))) | ||
441 | |||
442 | ((( | ||
443 | If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C | ||
444 | ))) | ||
445 | |||
446 | ((( | ||
447 | If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C | ||
448 | ))) | ||
449 | |||
450 | |||
451 | |||
452 | === 2.4.7 Soil Conductivity (EC) === | ||
453 | |||
454 | ((( | ||
455 | Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). | ||
456 | ))) | ||
457 | |||
458 | ((( | ||
459 | For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. | ||
460 | ))) | ||
461 | |||
462 | ((( | ||
463 | Generally, the EC value of irrigation water is less than 800uS / cm. | ||
464 | ))) | ||
465 | |||
466 | ((( | ||
467 | |||
468 | ))) | ||
469 | |||
470 | ((( | ||
471 | |||
472 | ))) | ||
473 | |||
474 | === 2.4.8 Digital Interrupt === | ||
475 | |||
476 | ((( | ||
477 | Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. | ||
478 | ))) | ||
479 | |||
480 | ((( | ||
481 | The command is: | ||
482 | ))) | ||
483 | |||
484 | ((( | ||
485 | (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** | ||
486 | ))) | ||
487 | |||
488 | |||
489 | ((( | ||
490 | The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. | ||
491 | ))) | ||
492 | |||
493 | |||
494 | ((( | ||
495 | Example: | ||
496 | ))) | ||
497 | |||
498 | ((( | ||
499 | 0x(00): Normal uplink packet. | ||
500 | ))) | ||
501 | |||
502 | ((( | ||
503 | 0x(01): Interrupt Uplink Packet. | ||
504 | ))) | ||
505 | |||
506 | |||
507 | |||
508 | === 2.4.9 +5V Output === | ||
509 | |||
510 | ((( | ||
511 | NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. | ||
512 | ))) | ||
513 | |||
514 | |||
515 | ((( | ||
516 | The 5V output time can be controlled by AT Command. | ||
517 | ))) | ||
518 | |||
519 | ((( | ||
520 | (% style="color:blue" %)**AT+5VT=1000** | ||
521 | ))) | ||
522 | |||
523 | ((( | ||
524 | Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. | ||
525 | ))) | ||
526 | |||
527 | |||
528 | |||
529 | == 2.5 Downlink Payload == | ||
530 | |||
531 | By default, NSE01 prints the downlink payload to console port. | ||
532 | |||
533 | [[image:image-20220708133731-5.png]] | ||
534 | |||
535 | |||
536 | ((( | ||
537 | (% style="color:blue" %)**Examples:** | ||
538 | ))) | ||
539 | |||
540 | ((( | ||
541 | |||
542 | ))) | ||
543 | |||
544 | * ((( | ||
545 | (% style="color:blue" %)**Set TDC** | ||
546 | ))) | ||
547 | |||
548 | ((( | ||
549 | If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. | ||
550 | ))) | ||
551 | |||
552 | ((( | ||
553 | Payload: 01 00 00 1E TDC=30S | ||
554 | ))) | ||
555 | |||
556 | ((( | ||
557 | Payload: 01 00 00 3C TDC=60S | ||
558 | ))) | ||
559 | |||
560 | ((( | ||
561 | |||
562 | ))) | ||
563 | |||
564 | * ((( | ||
565 | (% style="color:blue" %)**Reset** | ||
566 | ))) | ||
567 | |||
568 | ((( | ||
569 | If payload = 0x04FF, it will reset the NSE01 | ||
570 | ))) | ||
571 | |||
572 | |||
573 | * (% style="color:blue" %)**INTMOD** | ||
574 | |||
575 | ((( | ||
576 | Downlink Payload: 06000003, Set AT+INTMOD=3 | ||
577 | ))) | ||
578 | |||
579 | |||
580 | |||
581 | == 2.6 LED Indicator == | ||
582 | |||
583 | ((( | ||
584 | The NSE01 has an internal LED which is to show the status of different state. | ||
585 | |||
586 | |||
587 | * When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) | ||
588 | * Then the LED will be on for 1 second means device is boot normally. | ||
589 | * After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. | ||
590 | * For each uplink probe, LED will be on for 500ms. | ||
591 | ))) | ||
592 | |||
593 | |||
594 | |||
595 | |||
596 | == 2.7 Installation in Soil == | ||
597 | |||
598 | __**Measurement the soil surface**__ | ||
599 | |||
600 | ((( | ||
601 | Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] | ||
602 | ))) | ||
603 | |||
604 | [[image:1657259653666-883.png]] | ||
605 | |||
606 | |||
607 | ((( | ||
608 | |||
609 | |||
610 | ((( | ||
611 | Dig a hole with diameter > 20CM. | ||
612 | ))) | ||
613 | |||
614 | ((( | ||
615 | Horizontal insert the probe to the soil and fill the hole for long term measurement. | ||
616 | ))) | ||
617 | ))) | ||
618 | |||
619 | [[image:1654506665940-119.png]] | ||
620 | |||
621 | ((( | ||
622 | |||
623 | ))) | ||
624 | |||
625 | |||
626 | == 2.8 Firmware Change Log == | ||
627 | |||
628 | |||
629 | Download URL & Firmware Change log | ||
630 | |||
631 | [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] | ||
632 | |||
633 | |||
634 | Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] | ||
635 | |||
636 | |||
637 | |||
638 | == 2.9 Battery Analysis == | ||
639 | |||
640 | === 2.9.1 Battery Type === | ||
641 | |||
642 | |||
643 | ((( | ||
644 | The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. | ||
645 | ))) | ||
646 | |||
647 | |||
648 | ((( | ||
649 | The battery is designed to last for several years depends on the actually use environment and update interval. | ||
650 | ))) | ||
651 | |||
652 | |||
653 | ((( | ||
654 | The battery related documents as below: | ||
655 | ))) | ||
656 | |||
657 | * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] | ||
658 | * [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] | ||
659 | * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] | ||
660 | |||
661 | ((( | ||
662 | [[image:image-20220708140453-6.png]] | ||
663 | ))) | ||
664 | |||
665 | |||
666 | |||
667 | === 2.9.2 Power consumption Analyze === | ||
668 | |||
669 | ((( | ||
670 | Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. | ||
671 | ))) | ||
672 | |||
673 | |||
674 | ((( | ||
675 | Instruction to use as below: | ||
676 | ))) | ||
677 | |||
678 | ((( | ||
679 | (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] | ||
680 | ))) | ||
681 | |||
682 | |||
683 | ((( | ||
684 | (% style="color:blue" %)**Step 2: **(%%) Open it and choose | ||
685 | ))) | ||
686 | |||
687 | * ((( | ||
688 | Product Model | ||
689 | ))) | ||
690 | * ((( | ||
691 | Uplink Interval | ||
692 | ))) | ||
693 | * ((( | ||
694 | Working Mode | ||
695 | ))) | ||
696 | |||
697 | ((( | ||
698 | And the Life expectation in difference case will be shown on the right. | ||
699 | ))) | ||
700 | |||
701 | [[image:image-20220708141352-7.jpeg]] | ||
702 | |||
703 | |||
704 | |||
705 | === 2.9.3 Battery Note === | ||
706 | |||
707 | ((( | ||
708 | The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. | ||
709 | ))) | ||
710 | |||
711 | |||
712 | |||
713 | === 2.9.4 Replace the battery === | ||
714 | |||
715 | ((( | ||
716 | The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). | ||
717 | ))) | ||
718 | |||
719 | |||
720 | |||
721 | = 3. Access NB-IoT Module = | ||
722 | |||
723 | ((( | ||
724 | Users can directly access the AT command set of the NB-IoT module. | ||
725 | ))) | ||
726 | |||
727 | ((( | ||
728 | The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] | ||
729 | ))) | ||
730 | |||
731 | [[image:1657261278785-153.png]] | ||
732 | |||
733 | |||
734 | |||
735 | = 4. Using the AT Commands = | ||
736 | |||
737 | == 4.1 Access AT Commands == | ||
738 | |||
739 | See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] | ||
740 | |||
741 | |||
742 | AT+<CMD>? : Help on <CMD> | ||
743 | |||
744 | AT+<CMD> : Run <CMD> | ||
745 | |||
746 | AT+<CMD>=<value> : Set the value | ||
747 | |||
748 | AT+<CMD>=? : Get the value | ||
749 | |||
750 | |||
751 | (% style="color:#037691" %)**General Commands**(%%) | ||
752 | |||
753 | AT : Attention | ||
754 | |||
755 | AT? : Short Help | ||
756 | |||
757 | ATZ : MCU Reset | ||
758 | |||
759 | AT+TDC : Application Data Transmission Interval | ||
760 | |||
761 | AT+CFG : Print all configurations | ||
762 | |||
763 | AT+CFGMOD : Working mode selection | ||
764 | |||
765 | AT+INTMOD : Set the trigger interrupt mode | ||
766 | |||
767 | AT+5VT : Set extend the time of 5V power | ||
768 | |||
769 | AT+PRO : Choose agreement | ||
770 | |||
771 | AT+WEIGRE : Get weight or set weight to 0 | ||
772 | |||
773 | AT+WEIGAP : Get or Set the GapValue of weight | ||
774 | |||
775 | AT+RXDL : Extend the sending and receiving time | ||
776 | |||
777 | AT+CNTFAC : Get or set counting parameters | ||
778 | |||
779 | AT+SERVADDR : Server Address | ||
780 | |||
781 | |||
782 | (% style="color:#037691" %)**COAP Management** | ||
783 | |||
784 | AT+URI : Resource parameters | ||
785 | |||
786 | |||
787 | (% style="color:#037691" %)**UDP Management** | ||
788 | |||
789 | AT+CFM : Upload confirmation mode (only valid for UDP) | ||
790 | |||
791 | |||
792 | (% style="color:#037691" %)**MQTT Management** | ||
793 | |||
794 | AT+CLIENT : Get or Set MQTT client | ||
795 | |||
796 | AT+UNAME : Get or Set MQTT Username | ||
797 | |||
798 | AT+PWD : Get or Set MQTT password | ||
799 | |||
800 | AT+PUBTOPIC : Get or Set MQTT publish topic | ||
801 | |||
802 | AT+SUBTOPIC : Get or Set MQTT subscription topic | ||
803 | |||
804 | |||
805 | (% style="color:#037691" %)**Information** | ||
806 | |||
807 | AT+FDR : Factory Data Reset | ||
808 | |||
809 | AT+PWORD : Serial Access Password | ||
810 | |||
811 | |||
812 | |||
813 | = 5. FAQ = | ||
814 | |||
815 | == 5.1 How to Upgrade Firmware == | ||
816 | |||
817 | |||
818 | ((( | ||
819 | User can upgrade the firmware for 1) bug fix, 2) new feature release. | ||
820 | ))) | ||
821 | |||
822 | ((( | ||
823 | Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] | ||
824 | ))) | ||
825 | |||
826 | ((( | ||
827 | (% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. | ||
828 | ))) | ||
829 | |||
830 | |||
831 | |||
832 | == 5.2 Can I calibrate NSE01 to different soil types? == | ||
833 | |||
834 | ((( | ||
835 | NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. | ||
836 | ))) | ||
837 | |||
838 | |||
839 | = 6. Trouble Shooting = | ||
840 | |||
841 | == 6.1 Connection problem when uploading firmware == | ||
842 | |||
843 | |||
844 | ((( | ||
845 | **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] | ||
846 | ))) | ||
847 | |||
848 | (% class="wikigeneratedid" %) | ||
849 | ((( | ||
850 | |||
851 | ))) | ||
852 | |||
853 | |||
854 | == 6.2 AT Command input doesn't work == | ||
855 | |||
856 | ((( | ||
857 | In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. | ||
858 | |||
859 | |||
860 | ))) | ||
861 | |||
862 | |||
863 | = 7. Order Info = | ||
864 | |||
865 | |||
866 | Part Number**:** (% style="color:#4f81bd" %)**NSE01** | ||
867 | |||
868 | |||
869 | (% class="wikigeneratedid" %) | ||
870 | ((( | ||
871 | |||
872 | ))) | ||
873 | |||
874 | = 8. Packing Info = | ||
875 | |||
876 | ((( | ||
877 | |||
878 | |||
879 | (% style="color:#037691" %)**Package Includes**: | ||
880 | |||
881 | * NSE01 NB-IoT Soil Moisture & EC Sensor x 1 | ||
882 | * External antenna x 1 | ||
883 | ))) | ||
884 | |||
885 | ((( | ||
886 | |||
887 | |||
888 | (% style="color:#037691" %)**Dimension and weight**: | ||
889 | |||
890 | * Size: 195 x 125 x 55 mm | ||
891 | * Weight: 420g | ||
892 | ))) | ||
893 | |||
894 | ((( | ||
895 | |||
896 | |||
897 | |||
898 | |||
899 | ))) | ||
900 | |||
901 | = 9. Support = | ||
902 | |||
903 | * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. | ||
904 | * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] |