<
From version < 57.6 >
edited by Xiaoling
on 2022/07/08 11:52
To version < 57.2 >
edited by Xiaoling
on 2022/07/08 11:31
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -172,10 +172,10 @@
172 172  
173 173  In the PC, use below serial tool settings:
174 174  
175 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
176 176  * Data bits:** (% style="color:green" %)8(%%)**
177 177  * Stop bits: (% style="color:green" %)**1**
178 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
... ... @@ -220,9 +220,11 @@
220 220  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
221 221  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
222 222  
223 +
223 223  [[image:1657249864775-321.png]]
224 224  
225 225  
227 +
226 226  [[image:1657249930215-289.png]]
227 227  
228 228  
... ... @@ -240,6 +240,7 @@
240 240  * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
241 241  * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
242 242  
245 +
243 243  [[image:1657249978444-674.png]]
244 244  
245 245  
... ... @@ -246,6 +246,7 @@
246 246  [[image:1657249990869-686.png]]
247 247  
248 248  
252 +
249 249  (((
250 250  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
251 251  )))
... ... @@ -266,7 +266,6 @@
266 266  [[image:1657250255956-604.png]]
267 267  
268 268  
269 -
270 270  === 2.2.8 Change Update Interval ===
271 271  
272 272  User can use below command to change the (% style="color:green" %)**uplink interval**.
... ... @@ -291,7 +291,7 @@
291 291  |=(% style="width: 50px;" %)(((
292 292  **Size(bytes)**
293 293  )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
294 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
297 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>path:#Device_ID]]|(% style="width:41px" %)[[Ver>>path:#Version]]|(% style="width:46px" %)[[BAT>>path:#battery]]|(% style="width:123px" %)[[Signal Strength>>path:#Signal]]|(% style="width:108px" %)[[Soil Moisture>>path:#Payload_Explain]]|(% style="width:133px" %)[[Soil Temperature>>path:#Payload_Explain]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>path:#Payload_Explain]]|(% style="width:80px" %)[[Interrupt>>path:#Interrupt]]
295 295  
296 296  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
297 297  
... ... @@ -315,33 +315,52 @@
315 315  
316 316  
317 317  
321 +=== 2.3.1 MOD~=0(Default Mode) ===
318 318  
319 -== 2.4  Payload Explanation and Sensor Interface ==
323 +LSE01 will uplink payload via LoRaWAN with below payload format: 
320 320  
321 -=== 2.4.1  Device ID ===
325 +(((
326 +Uplink payload includes in total 11 bytes.
327 +)))
322 322  
323 -By default, the Device ID equal to the last 6 bytes of IMEI.
329 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
330 +|(((
331 +**Size**
324 324  
325 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
333 +**(bytes)**
334 +)))|**2**|**2**|**2**|**2**|**2**|**1**
335 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
336 +Temperature
326 326  
327 -**Example:**
338 +(Reserve, Ignore now)
339 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
340 +MOD & Digital Interrupt
328 328  
329 -AT+DEUI=A84041F15612
342 +(Optional)
343 +)))
330 330  
331 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
345 +=== 2.3.2 MOD~=1(Original value) ===
332 332  
347 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
333 333  
349 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
350 +|(((
351 +**Size**
334 334  
335 -=== 2.4.2  Version Info ===
353 +**(bytes)**
354 +)))|**2**|**2**|**2**|**2**|**2**|**1**
355 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
356 +Temperature
336 336  
337 -Specify the software version: 0x64=100, means firmware version 1.00.
358 +(Reserve, Ignore now)
359 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
360 +MOD & Digital Interrupt
338 338  
339 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
362 +(Optional)
363 +)))
340 340  
365 +=== 2.3.3 Battery Info ===
341 341  
342 -
343 -=== 2.4.3  Battery Info ===
344 -
345 345  (((
346 346  Check the battery voltage for LSE01.
347 347  )))
... ... @@ -356,32 +356,14 @@
356 356  
357 357  
358 358  
359 -=== 2.4.4  Signal Strength ===
381 +=== 2.3.4 Soil Moisture ===
360 360  
361 -NB-IoT Network signal Strength.
362 -
363 -**Ex1: 0x1d = 29**
364 -
365 -(% style="color:blue" %)**0**(%%)  -113dBm or less
366 -
367 -(% style="color:blue" %)**1**(%%)  -111dBm
368 -
369 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
370 -
371 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
372 -
373 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
374 -
375 -
376 -
377 -=== 2.4.5  Soil Moisture ===
378 -
379 379  (((
380 380  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
381 381  )))
382 382  
383 383  (((
384 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
388 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
385 385  )))
386 386  
387 387  (((
... ... @@ -394,10 +394,10 @@
394 394  
395 395  
396 396  
397 -=== 2.4. Soil Temperature ===
401 +=== 2.3.5 Soil Temperature ===
398 398  
399 399  (((
400 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
401 401  )))
402 402  
403 403  (((
... ... @@ -414,7 +414,7 @@
414 414  
415 415  
416 416  
417 -=== 2.4. Soil Conductivity (EC) ===
421 +=== 2.3.6 Soil Conductivity (EC) ===
418 418  
419 419  (((
420 420  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -421,7 +421,7 @@
421 421  )))
422 422  
423 423  (((
424 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
428 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
425 425  )))
426 426  
427 427  (((
... ... @@ -436,42 +436,39 @@
436 436  
437 437  )))
438 438  
439 -=== 2.4. Digital Interrupt ===
443 +=== 2.3.7 MOD ===
440 440  
445 +Firmware version at least v2.1 supports changing mode.
441 441  
442 -Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
447 +For example, bytes[10]=90
443 443  
444 -The command is:
449 +mod=(bytes[10]>>7)&0x01=1.
445 445  
446 -**AT+INTMOD=3    ~/~/(more info about INMOD please refer **[[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]]**).**
447 447  
452 +**Downlink Command:**
448 448  
449 -The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
454 +If payload = 0x0A00, workmode=0
450 450  
456 +If** **payload =** **0x0A01, workmode=1
451 451  
452 -Example:
453 453  
454 -0x(00): Normal uplink packet.
455 455  
456 -0x(01): Interrupt Uplink Packet.
460 +=== 2.3.8 ​Decode payload in The Things Network ===
457 457  
462 +While using TTN network, you can add the payload format to decode the payload.
458 458  
459 459  
465 +[[image:1654505570700-128.png]]
460 460  
461 -=== 2.4.9  ​+5V Output ===
467 +(((
468 +The payload decoder function for TTN is here:
469 +)))
462 462  
471 +(((
472 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
473 +)))
463 463  
464 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling.
465 465  
466 -
467 -The 5V output time can be controlled by AT Command.
468 -
469 -**(% style="color:blue" %)AT+5VT=1000**
470 -
471 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
472 -
473 -
474 -
475 475  == 2.4 Uplink Interval ==
476 476  
477 477  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0