<
From version < 57.2 >
edited by Xiaoling
on 2022/07/08 11:31
To version < 57.6 >
edited by Xiaoling
on 2022/07/08 11:52
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -172,10 +172,10 @@
172 172  
173 173  In the PC, use below serial tool settings:
174 174  
175 -* Baud: (% style="color:green" %)**9600**
175 +* Baud:  (% style="color:green" %)**9600**
176 176  * Data bits:** (% style="color:green" %)8(%%)**
177 177  * Stop bits: (% style="color:green" %)**1**
178 -* Parity: (% style="color:green" %)**None**
178 +* Parity:  (% style="color:green" %)**None**
179 179  * Flow Control: (% style="color:green" %)**None**
180 180  
181 181  (((
... ... @@ -220,11 +220,9 @@
220 220  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
221 221  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
222 222  
223 -
224 224  [[image:1657249864775-321.png]]
225 225  
226 226  
227 -
228 228  [[image:1657249930215-289.png]]
229 229  
230 230  
... ... @@ -242,7 +242,6 @@
242 242  * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
243 243  * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
244 244  
245 -
246 246  [[image:1657249978444-674.png]]
247 247  
248 248  
... ... @@ -249,7 +249,6 @@
249 249  [[image:1657249990869-686.png]]
250 250  
251 251  
252 -
253 253  (((
254 254  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
255 255  )))
... ... @@ -270,6 +270,7 @@
270 270  [[image:1657250255956-604.png]]
271 271  
272 272  
269 +
273 273  === 2.2.8 Change Update Interval ===
274 274  
275 275  User can use below command to change the (% style="color:green" %)**uplink interval**.
... ... @@ -294,7 +294,7 @@
294 294  |=(% style="width: 50px;" %)(((
295 295  **Size(bytes)**
296 296  )))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
297 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>path:#Device_ID]]|(% style="width:41px" %)[[Ver>>path:#Version]]|(% style="width:46px" %)[[BAT>>path:#battery]]|(% style="width:123px" %)[[Signal Strength>>path:#Signal]]|(% style="width:108px" %)[[Soil Moisture>>path:#Payload_Explain]]|(% style="width:133px" %)[[Soil Temperature>>path:#Payload_Explain]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>path:#Payload_Explain]]|(% style="width:80px" %)[[Interrupt>>path:#Interrupt]]
294 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
298 298  
299 299  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
300 300  
... ... @@ -318,52 +318,33 @@
318 318  
319 319  
320 320  
321 -=== 2.3.1 MOD~=0(Default Mode) ===
322 322  
323 -LSE01 will uplink payload via LoRaWAN with below payload format
319 +== 2.4  Payload Explanation and Sensor Interface ==
324 324  
325 -(((
326 -Uplink payload includes in total 11 bytes.
327 -)))
321 +=== 2.4.1  Device ID ===
328 328  
329 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
330 -|(((
331 -**Size**
323 +By default, the Device ID equal to the last 6 bytes of IMEI.
332 332  
333 -**(bytes)**
334 -)))|**2**|**2**|**2**|**2**|**2**|**1**
335 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
336 -Temperature
325 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
337 337  
338 -(Reserve, Ignore now)
339 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
340 -MOD & Digital Interrupt
327 +**Example:**
341 341  
342 -(Optional)
343 -)))
329 +AT+DEUI=A84041F15612
344 344  
345 -=== 2.3.2 MOD~=1(Original value) ===
331 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
346 346  
347 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
348 348  
349 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
350 -|(((
351 -**Size**
352 352  
353 -**(bytes)**
354 -)))|**2**|**2**|**2**|**2**|**2**|**1**
355 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
356 -Temperature
335 +=== 2.4.2  Version Info ===
357 357  
358 -(Reserve, Ignore now)
359 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
360 -MOD & Digital Interrupt
337 +Specify the software version: 0x64=100, means firmware version 1.00.
361 361  
362 -(Optional)
363 -)))
339 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
364 364  
365 -=== 2.3.3 Battery Info ===
366 366  
342 +
343 +=== 2.4.3  Battery Info ===
344 +
367 367  (((
368 368  Check the battery voltage for LSE01.
369 369  )))
... ... @@ -378,14 +378,32 @@
378 378  
379 379  
380 380  
381 -=== 2.3.4 Soil Moisture ===
359 +=== 2.4.4  Signal Strength ===
382 382  
361 +NB-IoT Network signal Strength.
362 +
363 +**Ex1: 0x1d = 29**
364 +
365 +(% style="color:blue" %)**0**(%%)  -113dBm or less
366 +
367 +(% style="color:blue" %)**1**(%%)  -111dBm
368 +
369 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
370 +
371 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
372 +
373 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
374 +
375 +
376 +
377 +=== 2.4.5  Soil Moisture ===
378 +
383 383  (((
384 384  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 385  )))
386 386  
387 387  (((
388 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
384 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
389 389  )))
390 390  
391 391  (((
... ... @@ -398,10 +398,10 @@
398 398  
399 399  
400 400  
401 -=== 2.3.5 Soil Temperature ===
397 +=== 2.4. Soil Temperature ===
402 402  
403 403  (((
404 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
400 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
405 405  )))
406 406  
407 407  (((
... ... @@ -418,7 +418,7 @@
418 418  
419 419  
420 420  
421 -=== 2.3.6 Soil Conductivity (EC) ===
417 +=== 2.4. Soil Conductivity (EC) ===
422 422  
423 423  (((
424 424  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -425,7 +425,7 @@
425 425  )))
426 426  
427 427  (((
428 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
424 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
429 429  )))
430 430  
431 431  (((
... ... @@ -440,39 +440,42 @@
440 440  
441 441  )))
442 442  
443 -=== 2.3.7 MOD ===
439 +=== 2.4. Digital Interrupt ===
444 444  
445 -Firmware version at least v2.1 supports changing mode.
446 446  
447 -For example, bytes[10]=90
442 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
448 448  
449 -mod=(bytes[10]>>7)&0x01=1.
444 +The command is:
450 450  
446 +**AT+INTMOD=3    ~/~/(more info about INMOD please refer **[[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]]**).**
451 451  
452 -**Downlink Command:**
453 453  
454 -If payload = 0x0A00, workmode=0
449 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
455 455  
456 -If** **payload =** **0x0A01, workmode=1
457 457  
452 +Example:
458 458  
454 +0x(00): Normal uplink packet.
459 459  
460 -=== 2.3.8 ​Decode payload in The Things Network ===
456 +0x(01): Interrupt Uplink Packet.
461 461  
462 -While using TTN network, you can add the payload format to decode the payload.
463 463  
464 464  
465 -[[image:1654505570700-128.png]]
466 466  
467 -(((
468 -The payload decoder function for TTN is here:
469 -)))
461 +=== 2.4.9  ​+5V Output ===
470 470  
471 -(((
472 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
473 -)))
474 474  
464 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling.
475 475  
466 +
467 +The 5V output time can be controlled by AT Command.
468 +
469 +**(% style="color:blue" %)AT+5VT=1000**
470 +
471 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
472 +
473 +
474 +
476 476  == 2.4 Uplink Interval ==
477 477  
478 478  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0