Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45
46
47 )))
48
49 (((
50 [[image:1653295757274-912.png]]
51
52
53 )))
54
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072CZT6 MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173
174 )))
175
176 == 1.3 Features ==
177
178
179 * LoRaWAN Class A & Class C protocol
180 * Optional Customized LoRa Protocol
181 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
182 * AT Commands to change parameters
183 * Remote configure parameters via LoRa Downlink
184 * Firmware upgradable via program port
185 * Counting
186
187
188
189
190 == 1.4  Applications ==
191
192
193 * Smart Buildings & Home Automation
194 * Logistics and Supply Chain Management
195 * Smart Metering
196 * Smart Agriculture
197 * Smart Cities
198 * Smart Factory
199
200
201
202
203 == 1.5 Hardware Variants ==
204
205
206 (% border="1" style="background-color:#f7faff; width:500px" %)
207 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
208 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
209 * 2 x Digital Input (Bi-direction)
210 * 2 x Digital Output
211 * 2 x Relay Output (5A@250VAC / 30VDC)
212 * 2 x 0~~20mA Analog Input (res:0.01mA)
213 * 2 x 0~~30V Analog Input (res:0.01v)
214 * 1 x Counting Port
215 )))
216
217
218
219
220 = 2. Power ON Device =
221
222
223 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
224
225 (((
226 PWR will on when device is properly powered.
227
228
229 )))
230
231 [[image:1653297104069-180.png]]
232
233
234
235 = 3. Operation Mode =
236
237
238 == 3.1 How it works? ==
239
240
241 (((
242 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
243 )))
244
245 (((
246 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
247 )))
248
249
250
251 == 3.2 Example to join LoRaWAN network ==
252
253
254 (((
255 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
256
257
258 )))
259
260 [[image:image-20220523172350-1.png||height="266" width="864"]]
261
262
263 (((
264 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
265
266
267 )))
268
269 (((
270 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
271 )))
272
273 (((
274 Each LT is shipped with a sticker with the default device EUI as below:
275 )))
276
277 [[image:1653297924498-393.png]]
278
279
280 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
281
282 Add APP EUI in the application.
283
284 [[image:1653297955910-247.png||height="321" width="716"]]
285
286
287 Add APP KEY and DEV EUI
288
289 [[image:1653298023685-319.png]]
290
291
292
293 (((
294 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
295 )))
296
297 [[image:1653298044601-602.png||height="405" width="709"]]
298
299
300
301 == 3.3 Uplink Payload ==
302
303
304 There are five working modes + one interrupt mode on LT for different type application:
305
306 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
307 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
308 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
309 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
310 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
311 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
312
313
314
315
316 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
317
318
319 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
320
321 [[image:image-20220523174024-3.png]]
322
323 (((
324
325
326 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 )))
328
329 [[image:image-20220523174254-4.png]]
330
331 * RO is for relay. ROx=1 : close,ROx=0 always open.
332 * DI is for digital input. DIx=1: high or float, DIx=0: low.
333 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334
335
336
337 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338
339 For example if payload is: [[image:image-20220523175847-2.png]]
340
341
342 **The value for the interface is:  **
343
344 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
345
346 AVI2 channel voltage is 0x04AC/1000=1.196V
347
348 ACI1 channel current is 0x1310/1000=4.880mA
349
350 ACI2 channel current is 0x1300/1000=4.864mA
351
352 The last byte 0xAA= 10101010(B) means
353
354 * [1] RO1 relay channel is close and the RO1 LED is ON.
355 * [0] RO2 relay channel is open and RO2 LED is OFF;
356
357
358
359 **LT22222-L:**
360
361 * [1] DI2 channel is high input and DI2 LED is ON;
362 * [0] DI1 channel is low input;
363
364 * [0] DO3 channel output state
365 ** DO3 is float in case no load between DO3 and V+.;
366 ** DO3 is high in case there is load between DO3 and V+.
367 ** DO3 LED is off in both case
368 * [1] DO2 channel output is low and DO2 LED is ON.
369 * [0] DO1 channel output state
370 ** DO1 is float in case no load between DO1 and V+.;
371 ** DO1 is high in case there is load between DO1 and V+.
372 ** DO1 LED is off in both case
373
374
375
376
377
378 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
379
380
381 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
382
383 (((
384 Total : 11 bytes payload
385 )))
386
387 [[image:image-20220523180452-3.png]]
388
389
390 (((
391 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
392 )))
393
394 [[image:image-20220523180506-4.png]]
395
396 * RO is for relay. ROx=1 : close,ROx=0 always open.
397 * FIRST: Indicate this is the first packet after join network.
398 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
399
400 (((
401 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
402 )))
403
404 (((
405
406
407 **To use counting mode, please run:**
408 )))
409
410 (% class="box infomessage" %)
411 (((
412 (((
413 **AT+MOD=2**
414
415 **ATZ**
416 )))
417 )))
418
419 (((
420
421
422 (% style="color:#4f81bd" %)**AT Commands for counting:**
423
424
425 )))
426
427 (((
428 **For LT22222-L:**
429
430
431 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
432
433 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
434
435 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
436
437 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
438
439 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
440
441 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
442 )))
443
444
445
446 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
447
448
449 **LT22222-L**: This mode the DI1 is used as a counting pin.
450
451 [[image:image-20220523181246-5.png]]
452
453 (((
454
455
456 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
457 )))
458
459 [[image:image-20220523181301-6.png]]
460
461 * RO is for relay. ROx=1 : close,ROx=0 always open.
462 * FIRST: Indicate this is the first packet after join network.
463 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
464
465 (((
466 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
467 )))
468
469
470 (((
471 **To use counting mode, please run:**
472 )))
473
474 (% class="box infomessage" %)
475 (((
476 (((
477 **AT+MOD=3**
478
479 **ATZ**
480 )))
481 )))
482
483 (((
484 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
485 )))
486
487
488
489 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
490
491
492 **LT22222-L**: This mode the DI1 is used as a counting pin.
493
494 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
495
496 [[image:image-20220523181903-8.png]]
497
498
499 (((
500 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
501 )))
502
503 [[image:image-20220523181727-7.png]]
504
505 * RO is for relay. ROx=1 : close,ROx=0 always open.
506 * FIRST: Indicate this is the first packet after join network.
507 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
508
509 (((
510 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
511 )))
512
513 (((
514
515
516 **To use this mode, please run:**
517 )))
518
519 (% class="box infomessage" %)
520 (((
521 (((
522 **AT+MOD=4**
523
524 **ATZ**
525 )))
526 )))
527
528
529
530 (((
531 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
532 )))
533
534 (((
535
536
537 **Plus below command for AVI1 Counting:**
538
539
540 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
541
542 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
543
544 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
545
546 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
547 )))
548
549
550
551 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
552
553
554 **LT22222-L**: This mode the DI1 is used as a counting pin.
555
556 [[image:image-20220523182334-9.png]]
557
558 (((
559
560
561 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
562 )))
563
564 * RO is for relay. ROx=1 : close,ROx=0 always open.
565 * FIRST: Indicate this is the first packet after join network.
566 * (((
567 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
568 )))
569
570 (((
571 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
572 )))
573
574 (((
575
576
577 **To use this mode, please run:**
578 )))
579
580 (% class="box infomessage" %)
581 (((
582 (((
583 **AT+MOD=5**
584
585 **ATZ**
586 )))
587 )))
588
589 (((
590 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
591 )))
592
593
594
595 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
596
597
598 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
599
600 For example, if user has configured below commands:
601
602 * **AT+MOD=1 ** **~-~->**  The normal working mode
603 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
604
605
606
607 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
608
609 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
610 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
611
612
613
614
615 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
616
617
618 (% style="color:#4f81bd" %)**Trigger base on voltage**:
619
620 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
621
622
623 **Example:**
624
625 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
626
627 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
628
629
630
631 (% style="color:#4f81bd" %)**Trigger base on current**:
632
633 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
634
635
636 **Example:**
637
638 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
639
640
641
642 (% style="color:#4f81bd" %)**Trigger base on DI status**:
643
644 DI status trigger Flag.
645
646 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
647
648
649 **Example:**
650
651 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
652
653
654
655 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
656
657 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
658
659 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
660
661 AA: Code for this downlink Command:
662
663 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
664
665 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
666
667 yy2 yy2: AC1 or AV1 high limit.
668
669 yy3 yy3: AC2 or AV2 low limit.
670
671 Yy4 yy4: AC2 or AV2 high limit.
672
673
674 **Example1**: AA 00 13 88 00 00 00 00 00 00
675
676 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
677
678
679 **Example2**: AA 02 01 00
680
681 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
682
683
684
685 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
686
687 MOD6 Payload : total 11 bytes payload
688
689 [[image:image-20220524085923-1.png]]
690
691
692 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
693
694 [[image:image-20220524090106-2.png]]
695
696 * Each bits shows if the corresponding trigger has been configured.
697
698
699
700 **Example:**
701
702 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703
704
705
706 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
707
708 [[image:image-20220524090249-3.png]]
709
710 * Each bits shows which status has been trigger on this uplink.
711
712
713
714 **Example:**
715
716 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
717
718
719
720 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
721
722 [[image:image-20220524090456-4.png]]
723
724 * Each bits shows which status has been trigger on this uplink.
725
726
727
728 **Example:**
729
730 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
731
732 00000101: Means both DI1 and DI2 trigger are enabled.
733
734
735
736 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
737
738 Downlink command to poll MOD6 status:
739
740 **AB 06**
741
742 When device got this command, it will send the MOD6 payload.
743
744
745
746
747 === 3.3.7 Payload Decoder ===
748
749 (((
750
751
752 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
753 )))
754
755
756
757 == 3.4 ​Configure LT via AT or Downlink ==
758
759
760 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
761
762 (((
763 There are two kinds of Commands:
764 )))
765
766 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
767
768 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
769
770
771
772
773 === 3.4.1 Common Commands ===
774
775
776 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
777
778
779
780 === 3.4.2 Sensor related commands ===
781
782
783 ==== 3.4.2.1 Set Transmit Interval ====
784
785
786 Set device uplink interval.
787
788 * (% style="color:#037691" %)**AT Command:**
789
790 **AT+TDC=N **
791
792
793 **Example: **AT+TDC=30000. Means set interval to 30 seconds
794
795
796 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
797
798 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
799
800
801
802
803 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
804
805
806 Set work mode.
807
808 * (% style="color:#037691" %)**AT Command:**
809
810 **AT+MOD=N  **
811
812
813 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
814
815
816 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
817
818 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
819
820
821
822
823 ==== 3.4.2.3 Poll an uplink ====
824
825
826 * (% style="color:#037691" %)**AT Command:**
827
828 There is no AT Command to poll uplink
829
830
831 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
832
833 **0x08 FF     **~/~/ Poll an uplink
834
835
836 **Example**: 0x08FF, ask device to send an Uplink
837
838
839
840
841 ==== 3.4.2.4 Enable Trigger Mode ====
842
843
844 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
845
846 * (% style="color:#037691" %)**AT Command:**
847
848 **AT+ADDMOD6=1 or 0**
849
850 1: Enable Trigger Mode
851
852 0: Disable Trigger Mode
853
854
855 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
856
857 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
858
859
860
861
862 ==== 3.4.2.5 Poll trigger settings ====
863
864
865 Poll trigger settings,
866
867 * (% style="color:#037691" %)**AT Command:**
868
869 There is no AT Command for this feature.
870
871
872 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
873
874 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
875
876
877
878
879 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
880
881
882 Enable Disable DI1/DI2/DI2 as trigger,
883
884 * (% style="color:#037691" %)**AT Command:**
885
886 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
887
888
889 **Example:**
890
891 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
892
893 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
894
895 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
896
897
898
899
900 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
901
902
903 Set DI1 or DI3(for LT-33222-L) trigger.
904
905 * (% style="color:#037691" %)**AT Command:**
906
907 **AT+TRIG1=a,b**
908
909 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
910
911 b : delay timing.
912
913
914 **Example:**
915
916 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
917
918
919 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
920 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
921
922
923
924
925 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
926
927
928 Set DI2 trigger.
929
930 * (% style="color:#037691" %)**AT Command:**
931
932 **AT+TRIG2=a,b**
933
934
935 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
936
937 b : delay timing.
938
939
940 **Example:**
941
942 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
943
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
946
947 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
948
949
950
951
952 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
953
954
955 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
956
957 * (% style="color:#037691" %)**AT Command**
958
959 **AT+ACLIM**
960
961
962 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
963
964 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
965
966
967
968
969 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
970
971
972 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
973
974 * (% style="color:#037691" %)**AT Command**
975
976 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
977
978
979 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
980
981 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
982
983
984
985
986 ==== 3.4.2.11 Trigger – Set minimum interval ====
987
988
989 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
990
991 * (% style="color:#037691" %)**AT Command**
992
993 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
994
995
996 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
997
998 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
999
1000 (((
1001
1002
1003 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1004 )))
1005
1006
1007
1008
1009 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1010
1011
1012 * (% style="color:#037691" %)**AT Command**
1013
1014 There is no AT Command to control Digital Output
1015
1016
1017 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1018 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
1019
1020 (((
1021 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1022 )))
1023
1024 (((
1025 01: Low,  00: High ,  11: No action
1026 )))
1027
1028 [[image:image-20220524092754-5.png]]
1029
1030 (((
1031 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1032 )))
1033
1034 (((
1035 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1036 )))
1037
1038
1039
1040
1041 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1042
1043
1044 * (% style="color:#037691" %)**AT Command**
1045
1046 There is no AT Command to control Digital Output
1047
1048
1049 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1050
1051 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1052
1053
1054 This is to control the digital output time of DO pin. Include four bytes:
1055
1056 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1057
1058 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1059
1060 01: DO pins will change back to original state after timeout.
1061
1062 00: DO pins will change to an inverter state after timeout 
1063
1064
1065 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1066
1067 [[image:image-20220524093238-6.png]]
1068
1069
1070 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1071
1072 [[image:image-20220524093328-7.png]]
1073
1074
1075 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1076
1077 [[image:image-20220524093351-8.png]]
1078
1079
1080 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1081
1082 Latching time. Unit: ms
1083
1084 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1085
1086
1087 **Example payload:**
1088
1089 **~1. A9 01 01 01 01 07 D0**
1090
1091 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1092
1093 **2. A9 01 00 01 11 07 D0**
1094
1095 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1096
1097 **3. A9 00 00 00 00 07 D0**
1098
1099 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1100
1101 **4. A9 00 11 01 00 07 D0**
1102
1103 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1104
1105
1106
1107
1108 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1109
1110
1111 * (% style="color:#037691" %)**AT Command:**
1112
1113 There is no AT Command to control Relay Output
1114
1115
1116 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1117
1118 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1119
1120
1121 (((
1122 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1123 )))
1124
1125 (((
1126 01: Close ,  00: Open , 11: No action
1127 )))
1128
1129 (((
1130 [[image:image-20220524093724-9.png]]
1131 )))
1132
1133 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1134
1135
1136
1137
1138 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1139
1140
1141 * (% style="color:#037691" %)**AT Command:**
1142
1143 There is no AT Command to control Relay Output
1144
1145
1146 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1147
1148 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1149
1150
1151 This is to control the relay output time of relay. Include four bytes:
1152
1153 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1154
1155 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1156
1157 01: Relays will change back to original state after timeout.
1158
1159 00: Relays will change to an inverter state after timeout
1160
1161
1162 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1163
1164 [[image:image-20220714135731-1.png||height="406" width="627"]]
1165
1166
1167 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1168
1169 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1170
1171
1172 **Example payload:**
1173
1174 **~1. 05 01 11 07 D**
1175
1176 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1177
1178 **2. 05 01 10 07 D0**
1179
1180 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1181
1182 **3. 05 00 01 07 D0**
1183
1184 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1185
1186 **4. 05 00 00 07 D0**
1187
1188 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1189
1190
1191
1192 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1193
1194
1195 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1196
1197 * (% style="color:#037691" %)**AT Command:**
1198
1199 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1200
1201
1202 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1203
1204 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1205
1206
1207
1208
1209 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1210
1211
1212 * (% style="color:#037691" %)**AT Command:**
1213
1214 **AT+SETCNT=aa,(bb cc dd ee) **
1215
1216 aa: 1: Set count1,
1217
1218 2: Set count2,
1219
1220 3: Set AV1 count
1221
1222 Bb cc dd ee: number to be set
1223
1224
1225 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1226
1227 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1228
1229
1230
1231
1232 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1233
1234
1235 Clear counting for counting mode
1236
1237 * (% style="color:#037691" %)**AT Command:**
1238
1239 **AT+CLRCOUNT ** ~/~/ clear all counting
1240
1241
1242 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1243
1244 **0x A6 01    ** ~/~/ clear all counting
1245
1246
1247
1248
1249 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1250
1251
1252 * (% style="color:#037691" %)**AT Command:**
1253
1254 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1255
1256
1257 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1258
1259 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1260
1261 (((
1262 range: aa bb cc:0 to 16777215,  (unit:second)
1263
1264
1265
1266
1267 )))
1268
1269 ==== 3.4.2.20 Reset save DR DO state ====
1270
1271
1272 * (% style="color:#037691" %)**AT Command:**
1273
1274 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1275
1276 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1277
1278
1279 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1280
1281 **0x AD aa      **~/~/ same as AT+RODORET =aa
1282
1283 (((
1284
1285
1286
1287
1288 ==== 3.4.2.21 Encrypted payload ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1294
1295 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1296
1297
1298
1299
1300 ==== 3.4.2.22 Get sensor value ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1306
1307 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1308
1309
1310
1311
1312 ==== 3.4.2.23 Resets the downlink packet count ====
1313
1314
1315 * (% style="color:#037691" %)**AT Command:**
1316
1317 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1318
1319 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1320
1321
1322
1323
1324 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1325
1326
1327 * (% style="color:#037691" %)**AT Command:**
1328
1329 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1330
1331 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1332
1333
1334 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1335
1336 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1337
1338
1339
1340
1341 ==== 3.4.2.25 Copy downlink to uplink ====
1342
1343
1344 * (% style="color:#037691" %)**AT Command**(%%)**:**
1345
1346 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1347
1348 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1349
1350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1351
1352 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1353
1354 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1355
1356 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1357
1358
1359
1360 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1361
1362
1363 * (((
1364 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1365
1366 **26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1367
1368
1369 )))
1370
1371 **Example:**
1372
1373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1374
1375
1376
1377 )))
1378
1379 == 3.5 Integrate with Mydevice ==
1380
1381
1382 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1383
1384 (((
1385 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1386 )))
1387
1388 (((
1389 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1390
1391
1392 )))
1393
1394 [[image:image-20220719105525-1.png||height="377" width="677"]]
1395
1396
1397
1398 [[image:image-20220719110247-2.png||height="388" width="683"]]
1399
1400
1401 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1402
1403 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1404
1405 Search under The things network
1406
1407 [[image:1653356838789-523.png||height="337" width="740"]]
1408
1409
1410
1411 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1412
1413 [[image:image-20220524094909-1.png||height="335" width="729"]]
1414
1415
1416 [[image:image-20220524094909-2.png||height="337" width="729"]]
1417
1418
1419 [[image:image-20220524094909-3.png||height="338" width="727"]]
1420
1421
1422 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1423
1424
1425 [[image:image-20220524094909-5.png||height="341" width="734"]]
1426
1427
1428
1429 == 3.6 Interface Detail ==
1430
1431
1432 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1433
1434
1435 Support NPN Type sensor
1436
1437 [[image:1653356991268-289.png]]
1438
1439
1440
1441 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1442
1443
1444 (((
1445 The DI port of LT-22222-L can support NPN or PNP output sensor.
1446 )))
1447
1448 (((
1449 (((
1450 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1451
1452
1453 )))
1454 )))
1455
1456 [[image:1653357170703-587.png]]
1457
1458 (((
1459 (((
1460 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1461 )))
1462 )))
1463
1464 (((
1465
1466 )))
1467
1468 (((
1469 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1470 )))
1471
1472 (((
1473 This type of sensor will output a low signal GND when active.
1474 )))
1475
1476 * (((
1477 Connect sensor's output to DI1-
1478 )))
1479 * (((
1480 Connect sensor's VCC to DI1+.
1481 )))
1482
1483 (((
1484 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1485 )))
1486
1487 (((
1488 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1489 )))
1490
1491 (((
1492 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1493 )))
1494
1495 (((
1496
1497
1498
1499 )))
1500
1501 (((
1502 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1503 )))
1504
1505 (((
1506 This type of sensor will output a high signal (example 24v) when active.
1507 )))
1508
1509 * (((
1510 Connect sensor's output to DI1+
1511 )))
1512 * (((
1513 Connect sensor's GND DI1-.
1514 )))
1515
1516 (((
1517 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1518 )))
1519
1520 (((
1521 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1522 )))
1523
1524 (((
1525 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1526 )))
1527
1528 (((
1529
1530
1531
1532 )))
1533
1534 (((
1535 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1536 )))
1537
1538 (((
1539 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1540 )))
1541
1542 * (((
1543 Connect sensor's output to DI1+ with a serial 50K resistor
1544 )))
1545 * (((
1546 Connect sensor's GND DI1-.
1547 )))
1548
1549 (((
1550 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1551 )))
1552
1553 (((
1554 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1555 )))
1556
1557 (((
1558 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1559 )))
1560
1561
1562
1563 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1564
1565
1566 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1567
1568 [[image:1653357531600-905.png]]
1569
1570
1571
1572 === 3.6.4 Analog Input Interface ===
1573
1574
1575 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1576
1577
1578 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1579
1580 [[image:1653357592296-182.png]]
1581
1582 Example to connect a 4~~20mA sensor
1583
1584 We take the wind speed sensor as an example for reference only.
1585
1586
1587 **Specifications of the wind speed sensor:**
1588
1589 Red:  12~~24v
1590
1591 Yellow:  4~~20mA
1592
1593 Black:  GND
1594
1595
1596 **Connection diagram:**
1597
1598 [[image:1653357640609-758.png]]
1599
1600 [[image:1653357648330-671.png||height="155" width="733"]]
1601
1602
1603
1604 === 3.6.5 Relay Output ===
1605
1606
1607 (((
1608 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1609 )))
1610
1611 [[image:image-20220524100215-9.png]]
1612
1613
1614 [[image:image-20220524100215-10.png||height="382" width="723"]]
1615
1616
1617
1618 == 3.7 LEDs Indicators ==
1619
1620
1621 [[image:image-20220524100748-11.png]]
1622
1623
1624
1625 = 4. Use AT Command =
1626
1627
1628 == 4.1 Access AT Command ==
1629
1630
1631 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1632
1633 [[image:1653358238933-385.png]]
1634
1635
1636 (((
1637 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1638 )))
1639
1640 [[image:1653358355238-883.png]]
1641
1642
1643 (((
1644 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1645 )))
1646
1647 (((
1648 AT+<CMD>?        : Help on <CMD>
1649 )))
1650
1651 (((
1652 AT+<CMD>         : Run <CMD>
1653 )))
1654
1655 (((
1656 AT+<CMD>=<value> : Set the value
1657 )))
1658
1659 (((
1660 AT+<CMD>=?       : Get the value
1661 )))
1662
1663 (((
1664 ATZ: Trig a reset of the MCU
1665 )))
1666
1667 (((
1668 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1669 )))
1670
1671 (((
1672 AT+DEUI: Get or Set the Device EUI
1673 )))
1674
1675 (((
1676 AT+DADDR: Get or Set the Device Address
1677 )))
1678
1679 (((
1680 AT+APPKEY: Get or Set the Application Key
1681 )))
1682
1683 (((
1684 AT+NWKSKEY: Get or Set the Network Session Key
1685 )))
1686
1687 (((
1688 AT+APPSKEY: Get or Set the Application Session Key
1689 )))
1690
1691 (((
1692 AT+APPEUI: Get or Set the Application EUI
1693 )))
1694
1695 (((
1696 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1697 )))
1698
1699 (((
1700 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1701 )))
1702
1703 (((
1704 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1705 )))
1706
1707 (((
1708 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1709 )))
1710
1711 (((
1712 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1713 )))
1714
1715 (((
1716 AT+RX2FQ: Get or Set the Rx2 window frequency
1717 )))
1718
1719 (((
1720 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1721 )))
1722
1723 (((
1724 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1725 )))
1726
1727 (((
1728 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1729 )))
1730
1731 (((
1732 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1733 )))
1734
1735 (((
1736 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1737 )))
1738
1739 (((
1740 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1741 )))
1742
1743 (((
1744 AT+NWKID: Get or Set the Network ID
1745 )))
1746
1747 (((
1748 AT+FCU: Get or Set the Frame Counter Uplink
1749 )))
1750
1751 (((
1752 AT+FCD: Get or Set the Frame Counter Downlink
1753 )))
1754
1755 (((
1756 AT+CLASS: Get or Set the Device Class
1757 )))
1758
1759 (((
1760 AT+JOIN: Join network
1761 )))
1762
1763 (((
1764 AT+NJS: Get OTAA Join Status
1765 )))
1766
1767 (((
1768 AT+SENDB: Send hexadecimal data along with the application port
1769 )))
1770
1771 (((
1772 AT+SEND: Send text data along with the application port
1773 )))
1774
1775 (((
1776 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1777 )))
1778
1779 (((
1780 AT+RECV: Print last received data in raw format
1781 )))
1782
1783 (((
1784 AT+VER: Get current image version and Frequency Band
1785 )))
1786
1787 (((
1788 AT+CFM: Get or Set the confirmation mode (0-1)
1789 )))
1790
1791 (((
1792 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1793 )))
1794
1795 (((
1796 AT+SNR: Get the SNR of the last received packet
1797 )))
1798
1799 (((
1800 AT+RSSI: Get the RSSI of the last received packet
1801 )))
1802
1803 (((
1804 AT+TDC: Get or set the application data transmission interval in ms
1805 )))
1806
1807 (((
1808 AT+PORT: Get or set the application port
1809 )))
1810
1811 (((
1812 AT+DISAT: Disable AT commands
1813 )))
1814
1815 (((
1816 AT+PWORD: Set password, max 9 digits
1817 )))
1818
1819 (((
1820 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1821 )))
1822
1823 (((
1824 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1825 )))
1826
1827 (((
1828 AT+CFG: Print all settings
1829 )))
1830
1831
1832
1833 == 4.2 Common AT Command Sequence ==
1834
1835
1836 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1837
1838 (((
1839
1840
1841 **If device has not joined network yet:**
1842 )))
1843
1844 (((
1845 (% style="background-color:#dcdcdc" %)123456
1846 )))
1847
1848 (((
1849 (% style="background-color:#dcdcdc" %)AT+FDR
1850 )))
1851
1852 (((
1853 (% style="background-color:#dcdcdc" %)123456
1854 )))
1855
1856 (((
1857 (% style="background-color:#dcdcdc" %)AT+NJM=0
1858 )))
1859
1860 (((
1861 (% style="background-color:#dcdcdc" %)ATZ
1862 )))
1863
1864
1865 (((
1866 **If device already joined network:**
1867 )))
1868
1869 (((
1870 (% style="background-color:#dcdcdc" %)AT+NJM=0
1871 )))
1872
1873 (((
1874 (% style="background-color:#dcdcdc" %)ATZ
1875 )))
1876
1877
1878
1879 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1880
1881 (((
1882
1883
1884 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1901 )))
1902
1903 (((
1904 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1905 )))
1906
1907 (((
1908 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1909 )))
1910
1911 (((
1912 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1913 )))
1914
1915 (((
1916 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1917 )))
1918
1919 (((
1920 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1921 )))
1922
1923 (((
1924 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1925 )))
1926
1927 (((
1928 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1929 )))
1930
1931 (((
1932 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1933
1934
1935 )))
1936
1937 (((
1938 (% style="color:red" %)**Note:**
1939 )))
1940
1941 (((
1942 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1943 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1944 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1945 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1946
1947
1948 )))
1949
1950 (((
1951 [[image:1653359097980-169.png||height="188" width="729"]]
1952 )))
1953
1954 (((
1955
1956 )))
1957
1958
1959 === 4.2.3 Change to Class A ===
1960
1961
1962 If sensor JOINED
1963 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1964 ATZ
1965
1966
1967
1968 = 5. FAQ =
1969
1970
1971 == 5.1 How to upgrade the image? ==
1972
1973
1974 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1975
1976 * Support new features
1977 * For bug fix
1978 * Change LoRaWAN bands.
1979
1980 Below shows the hardware connection for how to upload an image to the LT:
1981
1982 [[image:1653359603330-121.png]]
1983
1984
1985 (((
1986 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1987 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1988 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1989
1990
1991 (% style="color:blue" %)**For LT-22222-L**(%%):
1992 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1993
1994
1995 )))
1996
1997 [[image:image-20220524103407-12.png]]
1998
1999 [[image:image-20220524103429-13.png]]
2000
2001 [[image:image-20220524104033-15.png]]
2002
2003
2004 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2005
2006
2007 [[image:1653360054704-518.png||height="186" width="745"]]
2008
2009
2010 (((
2011 (((
2012
2013
2014 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2015
2016
2017 )))
2018 )))
2019
2020 (((
2021 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2022 )))
2023
2024 (((
2025
2026
2027
2028 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2029
2030
2031 )))
2032
2033 (((
2034 (((
2035 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2036 )))
2037 )))
2038
2039 (((
2040 (((
2041 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2042
2043
2044
2045 )))
2046 )))
2047
2048 (((
2049 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2050
2051
2052 )))
2053
2054 (((
2055 [[image:1653360231087-571.png||height="401" width="727"]]
2056
2057
2058 )))
2059
2060 (((
2061 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2062 )))
2063
2064
2065
2066 (((
2067 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2068
2069
2070 )))
2071
2072 (((
2073 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2074 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
2075 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2076 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2077 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2078 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2079 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2080 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2081 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2082 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2083 )))
2084
2085
2086 (((
2087 As shown in below:
2088 )))
2089
2090 [[image:1653360498588-932.png||height="485" width="726"]]
2091
2092
2093
2094 == 5.4 Can I see counting event in Serial? ==
2095
2096
2097 (((
2098 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2099
2100
2101
2102 == 5.5 Can i use point to point communication for LT-22222-L? ==
2103
2104
2105 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2106
2107
2108
2109 )))
2110
2111 (((
2112 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2113
2114
2115 If the device is not shut down, but directly powered off.
2116
2117 It will default that this is a power-off state.
2118
2119 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2120
2121 After restart, the status before power failure will be read from flash.
2122
2123
2124
2125 = 6. Trouble Shooting =
2126
2127
2128 )))
2129
2130 (((
2131 (((
2132 == 6.1 Downlink doesn't work, how to solve it? ==
2133
2134
2135 )))
2136 )))
2137
2138 (((
2139 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2140 )))
2141
2142 (((
2143
2144
2145
2146 == 6.2 Have trouble to upload image. ==
2147
2148
2149 )))
2150
2151 (((
2152 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2153 )))
2154
2155 (((
2156
2157
2158
2159 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2160
2161
2162 )))
2163
2164 (((
2165 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2166 )))
2167
2168
2169
2170 = 7. Order Info =
2171
2172
2173 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2174
2175 (% style="color:#4f81bd" %)**XXX:**
2176
2177 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2178 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2179 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2180 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2181 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2182 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2183 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2184 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2185 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2186
2187
2188
2189
2190 = 8. Packing Info =
2191
2192
2193 **Package Includes**:
2194
2195 * LT-22222-L I/O Controller x 1
2196 * Stick Antenna for LoRa RF part x 1
2197 * Bracket for controller x1
2198 * Program cable x 1
2199
2200 **Dimension and weight**:
2201
2202 * Device Size: 13.5 x 7 x 3 cm
2203 * Device Weight: 105g
2204 * Package Size / pcs : 14.5 x 8 x 5 cm
2205 * Weight / pcs : 170g
2206
2207
2208
2209
2210 = 9. Support =
2211
2212
2213 * (((
2214 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2215 )))
2216 * (((
2217 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2218
2219
2220
2221
2222 )))
2223
2224 = 10. Reference​​​​​ =
2225
2226
2227 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2228 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2229 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2230
2231
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0