Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188
189 == 1.4  Applications ==
190
191
192 * Smart Buildings & Home Automation
193 * Logistics and Supply Chain Management
194 * Smart Metering
195 * Smart Agriculture
196 * Smart Cities
197 * Smart Factory
198
199
200
201
202 == 1.5 Hardware Variants ==
203
204
205 (% border="1" style="background-color:#f7faff; width:500px" %)
206 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
207 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
208 * 2 x Digital Input (Bi-direction)
209 * 2 x Digital Output
210 * 2 x Relay Output (5A@250VAC / 30VDC)
211 * 2 x 0~~20mA Analog Input (res:0.01mA)
212 * 2 x 0~~30V Analog Input (res:0.01v)
213 * 1 x Counting Port
214 )))
215
216
217
218 = 2. Power ON Device =
219
220
221 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
222
223 (((
224 PWR will on when device is properly powered.
225 )))
226
227 [[image:1653297104069-180.png]]
228
229
230
231 = 3. Operation Mode =
232
233 == 3.1 How it works? ==
234
235
236 (((
237 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
238 )))
239
240 (((
241 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
242 )))
243
244
245
246 == 3.2 Example to join LoRaWAN network ==
247
248
249 (((
250 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
251
252
253 )))
254
255 [[image:image-20220523172350-1.png||height="266" width="864"]]
256
257
258 (((
259 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
260
261
262 )))
263
264 (((
265 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
266 )))
267
268 (((
269 Each LT is shipped with a sticker with the default device EUI as below:
270 )))
271
272 [[image:1653297924498-393.png]]
273
274
275 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
276
277 Add APP EUI in the application.
278
279 [[image:1653297955910-247.png||height="321" width="716"]]
280
281
282 Add APP KEY and DEV EUI
283
284 [[image:1653298023685-319.png]]
285
286
287
288 (((
289 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
290 )))
291
292 [[image:1653298044601-602.png||height="405" width="709"]]
293
294
295
296 == 3.3 Uplink Payload ==
297
298
299 There are five working modes + one interrupt mode on LT for different type application:
300
301 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
302 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
303 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
304 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
305 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
306 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
307
308
309
310
311 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
312
313
314 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
315
316 [[image:image-20220523174024-3.png]]
317
318 (((
319
320
321 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
322 )))
323
324 [[image:image-20220523174254-4.png]]
325
326 * RO is for relay. ROx=1 : close,ROx=0 always open.
327 * DI is for digital input. DIx=1: high or float, DIx=0: low.
328 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
329
330 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
331
332 For example if payload is: [[image:image-20220523175847-2.png]]
333
334
335 **The value for the interface is:  **
336
337 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
338
339 AVI2 channel voltage is 0x04AC/1000=1.196V
340
341 ACI1 channel current is 0x1310/1000=4.880mA
342
343 ACI2 channel current is 0x1300/1000=4.864mA
344
345 The last byte 0xAA= 10101010(B) means
346
347 * [1] RO1 relay channel is close and the RO1 LED is ON.
348 * [0] RO2 relay channel is open and RO2 LED is OFF;
349
350 **LT22222-L:**
351
352 * [1] DI2 channel is high input and DI2 LED is ON;
353 * [0] DI1 channel is low input;
354
355 * [0] DO3 channel output state
356 ** DO3 is float in case no load between DO3 and V+.;
357 ** DO3 is high in case there is load between DO3 and V+.
358 ** DO3 LED is off in both case
359 * [1] DO2 channel output is low and DO2 LED is ON.
360 * [0] DO1 channel output state
361 ** DO1 is float in case no load between DO1 and V+.;
362 ** DO1 is high in case there is load between DO1 and V+.
363 ** DO1 LED is off in both case
364
365
366
367
368 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
369
370
371 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
372
373 (((
374 Total : 11 bytes payload
375 )))
376
377 [[image:image-20220523180452-3.png]]
378
379
380 (((
381 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
382 )))
383
384 [[image:image-20220523180506-4.png]]
385
386 * RO is for relay. ROx=1 : close,ROx=0 always open.
387 * FIRST: Indicate this is the first packet after join network.
388 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
389
390 (((
391 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
392 )))
393
394 (((
395
396
397 **To use counting mode, please run:**
398 )))
399
400 (% class="box infomessage" %)
401 (((
402 (((
403 **AT+MOD=2**
404
405 **ATZ**
406 )))
407 )))
408
409 (((
410
411
412 (% style="color:#4f81bd" %)**AT Commands for counting:**
413 )))
414
415 (((
416 **For LT22222-L:**
417
418
419 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
420
421 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
422
423 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
424
425 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
426
427 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
428
429 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
430 )))
431
432
433
434 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
435
436
437 **LT22222-L**: This mode the DI1 is used as a counting pin.
438
439 [[image:image-20220523181246-5.png]]
440
441 (((
442
443
444 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
445 )))
446
447 [[image:image-20220523181301-6.png]]
448
449 * RO is for relay. ROx=1 : close,ROx=0 always open.
450 * FIRST: Indicate this is the first packet after join network.
451 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
452
453 (((
454 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
455 )))
456
457
458 (((
459 **To use counting mode, please run:**
460 )))
461
462 (% class="box infomessage" %)
463 (((
464 (((
465 **AT+MOD=3**
466
467 **ATZ**
468 )))
469 )))
470
471 (((
472 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
473 )))
474
475
476
477 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
478
479
480 **LT22222-L**: This mode the DI1 is used as a counting pin.
481
482 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
483
484 [[image:image-20220523181903-8.png]]
485
486
487 (((
488 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
489 )))
490
491 [[image:image-20220523181727-7.png]]
492
493 * RO is for relay. ROx=1 : close,ROx=0 always open.
494 * FIRST: Indicate this is the first packet after join network.
495 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
496
497 (((
498 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
499 )))
500
501 (((
502
503
504 **To use this mode, please run:**
505 )))
506
507 (% class="box infomessage" %)
508 (((
509 (((
510 **AT+MOD=4**
511
512 **ATZ**
513 )))
514 )))
515
516
517
518 (((
519 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
520 )))
521
522 (((
523
524
525 **Plus below command for AVI1 Counting:**
526
527
528 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
529
530 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
531
532 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
533
534 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
535 )))
536
537
538
539 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
540
541
542 **LT22222-L**: This mode the DI1 is used as a counting pin.
543
544 [[image:image-20220523182334-9.png]]
545
546 (((
547
548
549 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
550 )))
551
552 * RO is for relay. ROx=1 : close,ROx=0 always open.
553 * FIRST: Indicate this is the first packet after join network.
554 * (((
555 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 )))
557
558 (((
559 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
560 )))
561
562 (((
563
564
565 **To use this mode, please run:**
566 )))
567
568 (% class="box infomessage" %)
569 (((
570 (((
571 **AT+MOD=5**
572
573 **ATZ**
574 )))
575 )))
576
577 (((
578 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
579 )))
580
581
582
583 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
584
585
586 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
587
588 For example, if user has configured below commands:
589
590 * **AT+MOD=1 ** **~-~->**  The normal working mode
591 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
592
593 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
594
595 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
596 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
597
598 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
599
600
601 (% style="color:#4f81bd" %)**Trigger base on voltage**:
602
603 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
604
605 **Example:**
606
607 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
608
609 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
610
611
612
613 (% style="color:#4f81bd" %)**Trigger base on current**:
614
615 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
616
617 **Example:**
618
619 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
620
621
622
623 (% style="color:#4f81bd" %)**Trigger base on DI status**:
624
625 DI status trigger Flag.
626
627 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
628
629
630 **Example:**
631
632 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
633
634
635 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
636
637 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
638
639 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
640
641 AA: Code for this downlink Command:
642
643 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
644
645 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
646
647 yy2 yy2: AC1 or AV1 high limit.
648
649 yy3 yy3: AC2 or AV2 low limit.
650
651 Yy4 yy4: AC2 or AV2 high limit.
652
653
654 **Example1**: AA 00 13 88 00 00 00 00 00 00
655
656 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
657
658
659 **Example2**: AA 02 01 00
660
661 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
662
663
664
665 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
666
667 MOD6 Payload : total 11 bytes payload
668
669 [[image:image-20220524085923-1.png]]
670
671
672 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
673
674 [[image:image-20220524090106-2.png]]
675
676 * Each bits shows if the corresponding trigger has been configured.
677
678 **Example:**
679
680 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
681
682
683 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
684
685 [[image:image-20220524090249-3.png]]
686
687 * Each bits shows which status has been trigger on this uplink.
688
689 **Example:**
690
691 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
692
693
694 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
695
696 [[image:image-20220524090456-4.png]]
697
698 * Each bits shows which status has been trigger on this uplink.
699
700 **Example:**
701
702 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
703
704 00000101: Means both DI1 and DI2 trigger are enabled.
705
706
707 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
708
709 Downlink command to poll MOD6 status:
710
711 **AB 06**
712
713 When device got this command, it will send the MOD6 payload.
714
715
716
717 === 3.3.7 Payload Decoder ===
718
719 (((
720
721
722 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
723 )))
724
725
726
727 == 3.4 ​Configure LT via AT or Downlink ==
728
729
730 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
731
732 (((
733 There are two kinds of Commands:
734 )))
735
736 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
737
738 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
739
740
741
742 === 3.4.1 Common Commands ===
743
744
745 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
746
747
748
749 === 3.4.2 Sensor related commands ===
750
751
752 ==== 3.4.2.1 Set Transmit Interval ====
753
754
755 Set device uplink interval.
756
757 * (% style="color:#037691" %)**AT Command:**
758
759 **AT+TDC=N **
760
761
762 **Example: **AT+TDC=30000. Means set interval to 30 seconds
763
764
765 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
766
767 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
768
769
770
771
772 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
773
774
775 Set work mode.
776
777 * (% style="color:#037691" %)**AT Command:**
778
779 **AT+MOD=N  **
780
781
782 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
783
784
785 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
786
787 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
788
789
790
791
792 ==== 3.4.2.3 Poll an uplink ====
793
794
795 * (% style="color:#037691" %)**AT Command:**
796
797 There is no AT Command to poll uplink
798
799
800 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
801
802 **0x08 FF     **~/~/ Poll an uplink
803
804 **Example**: 0x08FF, ask device to send an Uplink
805
806
807
808
809 ==== 3.4.2.4 Enable Trigger Mode ====
810
811
812 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
813
814 * (% style="color:#037691" %)**AT Command:**
815
816 **AT+ADDMOD6=1 or 0**
817
818 1: Enable Trigger Mode
819
820 0: Disable Trigger Mode
821
822
823 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
824
825 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
826
827
828
829
830 ==== 3.4.2.5 Poll trigger settings ====
831
832
833 Poll trigger settings,
834
835 * (% style="color:#037691" %)**AT Command:**
836
837 There is no AT Command for this feature.
838
839
840 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
841
842 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
843
844
845
846
847 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
848
849
850 Enable Disable DI1/DI2/DI2 as trigger,
851
852 * (% style="color:#037691" %)**AT Command:**
853
854 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
855
856
857 **Example:**
858
859 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
860
861 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
862
863 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
864
865
866
867
868 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
869
870
871 Set DI1 or DI3(for LT-33222-L) trigger.
872
873 * (% style="color:#037691" %)**AT Command:**
874
875 **AT+TRIG1=a,b**
876
877 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
878
879 b : delay timing.
880
881
882 **Example:**
883
884 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
885
886
887 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
888 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
889
890
891
892
893 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
894
895
896 Set DI2 trigger.
897
898 * (% style="color:#037691" %)**AT Command:**
899
900 **AT+TRIG2=a,b**
901
902
903 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
904
905 b : delay timing.
906
907
908 **Example:**
909
910 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
911
912
913 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
914
915 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
916
917
918
919
920 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
921
922
923 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
924
925 * (% style="color:#037691" %)**AT Command**
926
927 **AT+ACLIM**
928
929
930 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
931
932 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
933
934
935
936
937 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
938
939
940 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
941
942 * (% style="color:#037691" %)**AT Command**
943
944 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
945
946
947 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
948
949 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
950
951
952
953
954 ==== 3.4.2.11 Trigger – Set minimum interval ====
955
956
957 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
958
959 * (% style="color:#037691" %)**AT Command**
960
961 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
962
963
964 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
965
966 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
967
968 (((
969
970
971 (% style="color:red" %)Note: ATDC setting must be more than 5min
972 )))
973
974
975
976
977 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
978
979
980 * (% style="color:#037691" %)**AT Command**
981
982 There is no AT Command to control Digital Output
983
984
985 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
986 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
987
988 (((
989 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
990 )))
991
992 (((
993 01: Low,  00: High ,  11: No action
994 )))
995
996 [[image:image-20220524092754-5.png]]
997
998 (((
999 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
1000 )))
1001
1002 (((
1003 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1004 )))
1005
1006
1007
1008
1009 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1010
1011
1012 * (% style="color:#037691" %)**AT Command**
1013
1014 There is no AT Command to control Digital Output
1015
1016
1017 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1018
1019 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1020
1021
1022 This is to control the digital output time of DO pin. Include four bytes:
1023
1024 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1025
1026 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1027
1028 01: DO pins will change back to original state after timeout.
1029
1030 00: DO pins will change to an inverter state after timeout 
1031
1032
1033 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1034
1035 [[image:image-20220524093238-6.png]]
1036
1037
1038 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1039
1040 [[image:image-20220524093328-7.png]]
1041
1042
1043 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1044
1045 [[image:image-20220524093351-8.png]]
1046
1047
1048 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1049
1050 Latching time. Unit: ms
1051
1052 Device will upload a packet if downlink code executes successfully.
1053
1054
1055 **Example payload:**
1056
1057 **~1. A9 01 01 01 01 07 D0**
1058
1059 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1060
1061 **2. A9 01 00 01 11 07 D0**
1062
1063 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1064
1065 **3. A9 00 00 00 00 07 D0**
1066
1067 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1068
1069 **4. A9 00 11 01 00 07 D0**
1070
1071 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1072
1073
1074
1075
1076 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1077
1078
1079 * (% style="color:#037691" %)**AT Command:**
1080
1081 There is no AT Command to control Relay Output
1082
1083
1084 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1085
1086 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1087
1088
1089 (((
1090 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1091 )))
1092
1093 (((
1094 01: Close ,  00: Open , 11: No action
1095 )))
1096
1097 (((
1098 [[image:image-20220524093724-9.png]]
1099 )))
1100
1101 Device will upload a packet if downlink code executes successfully.
1102
1103
1104
1105
1106 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1107
1108
1109 * (% style="color:#037691" %)**AT Command:**
1110
1111 There is no AT Command to control Relay Output
1112
1113
1114 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1115
1116 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1117
1118
1119 This is to control the relay output time of relay. Include four bytes:
1120
1121 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1122
1123 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1124
1125 01: Relays will change back to original state after timeout.
1126
1127 00: Relays will change to an inverter state after timeout
1128
1129
1130 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1131
1132 [[image:image-20220714135731-1.png||height="406" width="627"]]
1133
1134
1135 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1136
1137 Device will upload a packet if downlink code executes successfully.
1138
1139
1140 **Example payload:**
1141
1142 **~1. 05 01 11 07 D**
1143
1144 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1145
1146 **2. 05 01 10 07 D0**
1147
1148 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1149
1150 **3. 05 00 01 07 D0**
1151
1152 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1153
1154 **4. 05 00 00 07 D0**
1155
1156 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1157
1158
1159
1160
1161 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1162
1163
1164 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1165
1166 * (% style="color:#037691" %)**AT Command:**
1167
1168 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1169
1170
1171 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1172
1173 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1174
1175
1176
1177
1178 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1179
1180
1181 * (% style="color:#037691" %)**AT Command:**
1182
1183 **AT+SETCNT=aa,(bb cc dd ee) **
1184
1185 aa: 1: Set count1,
1186
1187 2: Set count2,
1188
1189 3: Set AV1 count
1190
1191 Bb cc dd ee: number to be set
1192
1193
1194 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1195
1196 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1197
1198
1199
1200
1201 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1202
1203
1204 Clear counting for counting mode
1205
1206 * (% style="color:#037691" %)**AT Command:**
1207
1208 **AT+CLRCOUNT ** ~/~/ clear all counting
1209
1210
1211 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1212
1213 **0x A6 01    ** ~/~/ clear all counting
1214
1215
1216
1217
1218 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1219
1220
1221 * (% style="color:#037691" %)**AT Command:**
1222
1223 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1224
1225
1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1227
1228 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1229
1230 (((
1231 range: aa bb cc:0 to 16777215,  (unit:second)
1232
1233
1234 )))
1235
1236 ==== 3.4.2.20 Reset save DR DO state ====
1237
1238 * (% style="color:#037691" %)**AT Command:**
1239
1240 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1241
1242 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1243
1244
1245 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1246
1247 **0x AD aa  **~/~/ same as AT+RODORET =aa
1248
1249 (((
1250
1251
1252 ==== 3.4.2.21 Encrypted payload ====
1253
1254 * (% style="color:#037691" %)**AT Command:**
1255
1256 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1257
1258 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1259
1260
1261 ==== 3.4.2.22 Get sensor value ====
1262
1263 * (% style="color:#037691" %)**AT Command:**
1264
1265 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1266
1267 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1268
1269
1270 ==== 3.4.2.23 Resets the downlink packet count ====
1271
1272 * (% style="color:#037691" %)**AT Command:**
1273
1274 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1275
1276 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1277
1278
1279 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1280
1281 * (% style="color:#037691" %)**AT Command:**
1282
1283 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1284
1285 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1286
1287
1288 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1289
1290 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1291
1292 ==== 3.4.2.25 Copy downlink to uplink ====
1293
1294 * (% style="color:#037691" %)**AT Command**(%%)**:**
1295
1296 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1297
1298 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1299
1300 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1301
1302 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1303
1304 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1305
1306 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1307
1308
1309
1310 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1311
1312 * (((
1313 (% style="color:#037691" %)**Downlink Payload**(%%)**: 26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1314 )))
1315
1316 Example:
1317
1318 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1319
1320
1321
1322 )))
1323
1324 == 3.5 Integrate with Mydevice ==
1325
1326
1327 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1328
1329 (((
1330 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1331 )))
1332
1333 (((
1334 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1335
1336
1337 )))
1338
1339 [[image:image-20220719105525-1.png||height="377" width="677"]]
1340
1341
1342
1343 [[image:image-20220719110247-2.png||height="388" width="683"]]
1344
1345
1346 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1347
1348 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1349
1350 Search under The things network
1351
1352 [[image:1653356838789-523.png||height="337" width="740"]]
1353
1354
1355
1356 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1357
1358 [[image:image-20220524094909-1.png||height="335" width="729"]]
1359
1360
1361 [[image:image-20220524094909-2.png||height="337" width="729"]]
1362
1363
1364 [[image:image-20220524094909-3.png||height="338" width="727"]]
1365
1366
1367 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1368
1369
1370 [[image:image-20220524094909-5.png||height="341" width="734"]]
1371
1372
1373
1374 == 3.6 Interface Detail ==
1375
1376
1377 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1378
1379
1380 Support NPN Type sensor
1381
1382 [[image:1653356991268-289.png]]
1383
1384
1385
1386 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1387
1388
1389 (((
1390 The DI port of LT-22222-L can support NPN or PNP output sensor.
1391 )))
1392
1393 (((
1394 (((
1395 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1396
1397
1398 )))
1399 )))
1400
1401 [[image:1653357170703-587.png]]
1402
1403 (((
1404 (((
1405 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1406 )))
1407 )))
1408
1409 (((
1410
1411 )))
1412
1413 (((
1414 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1415 )))
1416
1417 (((
1418 This type of sensor will output a low signal GND when active.
1419 )))
1420
1421 * (((
1422 Connect sensor’s output to DI1-
1423 )))
1424 * (((
1425 Connect sensor’s VCC to DI1+.
1426 )))
1427
1428 (((
1429 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1430 )))
1431
1432 (((
1433 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1434 )))
1435
1436 (((
1437 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1438 )))
1439
1440 (((
1441
1442
1443
1444 )))
1445
1446 (((
1447 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1448 )))
1449
1450 (((
1451 This type of sensor will output a high signal (example 24v) when active.
1452 )))
1453
1454 * (((
1455 Connect sensor’s output to DI1+
1456 )))
1457 * (((
1458 Connect sensor’s GND DI1-.
1459 )))
1460
1461 (((
1462 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1463 )))
1464
1465 (((
1466 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1467 )))
1468
1469 (((
1470 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1471 )))
1472
1473 (((
1474
1475
1476
1477 )))
1478
1479 (((
1480 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1481 )))
1482
1483 (((
1484 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1485 )))
1486
1487 * (((
1488 Connect sensor’s output to DI1+ with a serial 50K resistor
1489 )))
1490 * (((
1491 Connect sensor’s GND DI1-.
1492 )))
1493
1494 (((
1495 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1496 )))
1497
1498 (((
1499 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1500 )))
1501
1502 (((
1503 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1504 )))
1505
1506
1507
1508 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1509
1510
1511 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1512
1513 [[image:1653357531600-905.png]]
1514
1515
1516
1517 === 3.6.4 Analog Input Interface ===
1518
1519
1520 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1521
1522
1523 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1524
1525 [[image:1653357592296-182.png]]
1526
1527 Example to connect a 4~~20mA sensor
1528
1529 We take the wind speed sensor as an example for reference only.
1530
1531
1532 **Specifications of the wind speed sensor:**
1533
1534 Red:  12~~24v
1535
1536 Yellow:  4~~20mA
1537
1538 Black:  GND
1539
1540
1541 **Connection diagram:**
1542
1543 [[image:1653357640609-758.png]]
1544
1545 [[image:1653357648330-671.png||height="155" width="733"]]
1546
1547
1548
1549 === 3.6.5 Relay Output ===
1550
1551
1552 (((
1553 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1554 )))
1555
1556 [[image:image-20220524100215-9.png]]
1557
1558 [[image:image-20220524100215-10.png||height="382" width="723"]]
1559
1560
1561
1562 == 3.7 LEDs Indicators ==
1563
1564
1565 [[image:image-20220524100748-11.png]]
1566
1567
1568
1569 = 4. Use AT Command =
1570
1571
1572 == 4.1 Access AT Command ==
1573
1574
1575 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1576
1577 [[image:1653358238933-385.png]]
1578
1579
1580 (((
1581 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1582 )))
1583
1584 [[image:1653358355238-883.png]]
1585
1586
1587 (((
1588 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1589 )))
1590
1591 (((
1592 AT+<CMD>?        : Help on <CMD>
1593 )))
1594
1595 (((
1596 AT+<CMD>         : Run <CMD>
1597 )))
1598
1599 (((
1600 AT+<CMD>=<value> : Set the value
1601 )))
1602
1603 (((
1604 AT+<CMD>=?       : Get the value
1605 )))
1606
1607 (((
1608 ATZ: Trig a reset of the MCU
1609 )))
1610
1611 (((
1612 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1613 )))
1614
1615 (((
1616 AT+DEUI: Get or Set the Device EUI
1617 )))
1618
1619 (((
1620 AT+DADDR: Get or Set the Device Address
1621 )))
1622
1623 (((
1624 AT+APPKEY: Get or Set the Application Key
1625 )))
1626
1627 (((
1628 AT+NWKSKEY: Get or Set the Network Session Key
1629 )))
1630
1631 (((
1632 AT+APPSKEY: Get or Set the Application Session Key
1633 )))
1634
1635 (((
1636 AT+APPEUI: Get or Set the Application EUI
1637 )))
1638
1639 (((
1640 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1641 )))
1642
1643 (((
1644 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1645 )))
1646
1647 (((
1648 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1649 )))
1650
1651 (((
1652 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1653 )))
1654
1655 (((
1656 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1657 )))
1658
1659 (((
1660 AT+RX2FQ: Get or Set the Rx2 window frequency
1661 )))
1662
1663 (((
1664 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1665 )))
1666
1667 (((
1668 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1669 )))
1670
1671 (((
1672 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1673 )))
1674
1675 (((
1676 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1677 )))
1678
1679 (((
1680 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1681 )))
1682
1683 (((
1684 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1685 )))
1686
1687 (((
1688 AT+NWKID: Get or Set the Network ID
1689 )))
1690
1691 (((
1692 AT+FCU: Get or Set the Frame Counter Uplink
1693 )))
1694
1695 (((
1696 AT+FCD: Get or Set the Frame Counter Downlink
1697 )))
1698
1699 (((
1700 AT+CLASS: Get or Set the Device Class
1701 )))
1702
1703 (((
1704 AT+JOIN: Join network
1705 )))
1706
1707 (((
1708 AT+NJS: Get OTAA Join Status
1709 )))
1710
1711 (((
1712 AT+SENDB: Send hexadecimal data along with the application port
1713 )))
1714
1715 (((
1716 AT+SEND: Send text data along with the application port
1717 )))
1718
1719 (((
1720 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1721 )))
1722
1723 (((
1724 AT+RECV: Print last received data in raw format
1725 )))
1726
1727 (((
1728 AT+VER: Get current image version and Frequency Band
1729 )))
1730
1731 (((
1732 AT+CFM: Get or Set the confirmation mode (0-1)
1733 )))
1734
1735 (((
1736 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1737 )))
1738
1739 (((
1740 AT+SNR: Get the SNR of the last received packet
1741 )))
1742
1743 (((
1744 AT+RSSI: Get the RSSI of the last received packet
1745 )))
1746
1747 (((
1748 AT+TDC: Get or set the application data transmission interval in ms
1749 )))
1750
1751 (((
1752 AT+PORT: Get or set the application port
1753 )))
1754
1755 (((
1756 AT+DISAT: Disable AT commands
1757 )))
1758
1759 (((
1760 AT+PWORD: Set password, max 9 digits
1761 )))
1762
1763 (((
1764 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1765 )))
1766
1767 (((
1768 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1769 )))
1770
1771 (((
1772 AT+CFG: Print all settings
1773 )))
1774
1775
1776
1777 == 4.2 Common AT Command Sequence ==
1778
1779
1780 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1781
1782 (((
1783
1784
1785 **If device has not joined network yet:**
1786 )))
1787
1788 (((
1789 (% style="background-color:#dcdcdc" %)123456
1790 )))
1791
1792 (((
1793 (% style="background-color:#dcdcdc" %)AT+FDR
1794 )))
1795
1796 (((
1797 (% style="background-color:#dcdcdc" %)123456
1798 )))
1799
1800 (((
1801 (% style="background-color:#dcdcdc" %)AT+NJM=0
1802 )))
1803
1804 (((
1805 (% style="background-color:#dcdcdc" %)ATZ
1806 )))
1807
1808
1809 (((
1810 **If device already joined network:**
1811 )))
1812
1813 (((
1814 (% style="background-color:#dcdcdc" %)AT+NJM=0
1815 )))
1816
1817 (((
1818 (% style="background-color:#dcdcdc" %)ATZ
1819 )))
1820
1821
1822
1823 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1824
1825 (((
1826
1827
1828 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1829 )))
1830
1831 (((
1832 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1833 )))
1834
1835 (((
1836 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1837 )))
1838
1839 (((
1840 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1841 )))
1842
1843 (((
1844 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1845 )))
1846
1847 (((
1848 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1849 )))
1850
1851 (((
1852 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1853 )))
1854
1855 (((
1856 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1857 )))
1858
1859 (((
1860 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1861 )))
1862
1863 (((
1864 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1865 )))
1866
1867 (((
1868 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1869 )))
1870
1871 (((
1872 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1873 )))
1874
1875 (((
1876 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1877
1878
1879 )))
1880
1881 (((
1882 (% style="color:red" %)**Note:**
1883 )))
1884
1885 (((
1886 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1887 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1888 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1889 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1890
1891
1892 )))
1893
1894 (((
1895 [[image:1653359097980-169.png||height="188" width="729"]]
1896 )))
1897
1898 (((
1899
1900 )))
1901
1902
1903 === 4.2.3 Change to Class A ===
1904
1905
1906 If sensor JOINED
1907 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1908 ATZ
1909
1910
1911
1912 = 5. FAQ =
1913
1914
1915 == 5.1 How to upgrade the image? ==
1916
1917
1918 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1919
1920 * Support new features
1921 * For bug fix
1922 * Change LoRaWAN bands.
1923
1924 Below shows the hardware connection for how to upload an image to the LT:
1925
1926 [[image:1653359603330-121.png]]
1927
1928
1929 (((
1930 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1931 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1932 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1933
1934
1935 (% style="color:blue" %)**For LT-22222-L**(%%):
1936 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1937
1938
1939 )))
1940
1941 [[image:image-20220524103407-12.png]]
1942
1943 [[image:image-20220524103429-13.png]]
1944
1945 [[image:image-20220524104033-15.png]]
1946
1947
1948 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1949
1950
1951 [[image:1653360054704-518.png||height="186" width="745"]]
1952
1953
1954 (((
1955 (((
1956
1957
1958 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1959
1960
1961 )))
1962 )))
1963
1964 (((
1965 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1966 )))
1967
1968 (((
1969
1970
1971
1972 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1973
1974
1975 )))
1976
1977 (((
1978 (((
1979 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1980 )))
1981 )))
1982
1983 (((
1984 (((
1985 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1986
1987
1988 )))
1989 )))
1990
1991 (((
1992 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1993 )))
1994
1995 (((
1996 [[image:1653360231087-571.png||height="401" width="727"]]
1997 )))
1998
1999 (((
2000 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2001 )))
2002
2003
2004 (((
2005 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2006 )))
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2010 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
2011 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2012 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2013 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2014 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2015 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2016 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2017 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2018 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2019 )))
2020
2021
2022 (((
2023 As shown in below:
2024 )))
2025
2026 [[image:1653360498588-932.png||height="485" width="726"]]
2027
2028
2029
2030 == 5.4 Can I see counting event in Serial? ==
2031
2032
2033 (((
2034 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2035
2036
2037
2038 == 5.5 Can i use point to point communication for LT-22222-L? ==
2039
2040
2041 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2042
2043
2044
2045 )))
2046
2047 (((
2048 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2049
2050
2051 If the device is not shut down, but directly powered off.
2052
2053 It will default that this is a power-off state.
2054
2055 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2056
2057 After restart, the status before power failure will be read from flash.
2058
2059
2060
2061 = 6. Trouble Shooting =
2062 )))
2063
2064 (((
2065 (((
2066 == 6.1 Downlink doesn't work, how to solve it? ==
2067
2068
2069 )))
2070 )))
2071
2072 (((
2073 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2074 )))
2075
2076 (((
2077
2078
2079
2080 == 6.2 Have trouble to upload image. ==
2081
2082
2083 )))
2084
2085 (((
2086 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2087 )))
2088
2089 (((
2090
2091
2092
2093 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2094
2095
2096 )))
2097
2098 (((
2099 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2100 )))
2101
2102
2103
2104 = 7. Order Info =
2105
2106
2107 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2108
2109 (% style="color:#4f81bd" %)**XXX:**
2110
2111 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2112 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2113 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2114 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2115 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2116 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2117 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2118 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2119 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2120
2121
2122 = 8. Packing Info =
2123
2124
2125 **Package Includes**:
2126
2127 * LT-22222-L I/O Controller x 1
2128 * Stick Antenna for LoRa RF part x 1
2129 * Bracket for controller x1
2130 * Program cable x 1
2131
2132 **Dimension and weight**:
2133
2134 * Device Size: 13.5 x 7 x 3 cm
2135 * Device Weight: 105g
2136 * Package Size / pcs : 14.5 x 8 x 5 cm
2137 * Weight / pcs : 170g
2138
2139
2140 = 9. Support =
2141
2142
2143 * (((
2144 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2145 )))
2146 * (((
2147 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2148
2149
2150
2151
2152 )))
2153
2154 = 10. Reference​​​​​ =
2155
2156
2157 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2158 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2159 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2160
2161
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0