Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188
189
190 == 1.4  Applications ==
191
192
193 * Smart Buildings & Home Automation
194 * Logistics and Supply Chain Management
195 * Smart Metering
196 * Smart Agriculture
197 * Smart Cities
198 * Smart Factory
199
200
201
202
203
204 == 1.5 Hardware Variants ==
205
206
207 (% border="1" style="background-color:#f7faff; width:500px" %)
208 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
209 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
210 * 2 x Digital Input (Bi-direction)
211 * 2 x Digital Output
212 * 2 x Relay Output (5A@250VAC / 30VDC)
213 * 2 x 0~~20mA Analog Input (res:0.01mA)
214 * 2 x 0~~30V Analog Input (res:0.01v)
215 * 1 x Counting Port
216 )))
217
218
219
220
221 = 2. Power ON Device =
222
223
224 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
225
226 (((
227 PWR will on when device is properly powered.
228 )))
229
230 [[image:1653297104069-180.png]]
231
232
233
234 = 3. Operation Mode =
235
236 == 3.1 How it works? ==
237
238
239 (((
240 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
241 )))
242
243 (((
244 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
245 )))
246
247
248
249 == 3.2 Example to join LoRaWAN network ==
250
251
252 (((
253 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
254
255
256 )))
257
258 [[image:image-20220523172350-1.png||height="266" width="864"]]
259
260
261 (((
262 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
263
264
265 )))
266
267 (((
268 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
269 )))
270
271 (((
272 Each LT is shipped with a sticker with the default device EUI as below:
273 )))
274
275 [[image:1653297924498-393.png]]
276
277
278 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
279
280 Add APP EUI in the application.
281
282 [[image:1653297955910-247.png||height="321" width="716"]]
283
284
285 Add APP KEY and DEV EUI
286
287 [[image:1653298023685-319.png]]
288
289
290
291 (((
292 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
293 )))
294
295 [[image:1653298044601-602.png||height="405" width="709"]]
296
297
298
299 == 3.3 Uplink Payload ==
300
301
302 There are five working modes + one interrupt mode on LT for different type application:
303
304 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
305 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
306 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
307 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
308 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
309 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
310
311
312
313
314
315 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
316
317
318 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
319
320 [[image:image-20220523174024-3.png]]
321
322 (((
323
324
325 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
326 )))
327
328 [[image:image-20220523174254-4.png]]
329
330 * RO is for relay. ROx=1 : close,ROx=0 always open.
331 * DI is for digital input. DIx=1: high or float, DIx=0: low.
332 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
333
334 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
335
336 For example if payload is: [[image:image-20220523175847-2.png]]
337
338
339 **The value for the interface is:  **
340
341 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
342
343 AVI2 channel voltage is 0x04AC/1000=1.196V
344
345 ACI1 channel current is 0x1310/1000=4.880mA
346
347 ACI2 channel current is 0x1300/1000=4.864mA
348
349 The last byte 0xAA= 10101010(B) means
350
351 * [1] RO1 relay channel is close and the RO1 LED is ON.
352 * [0] RO2 relay channel is open and RO2 LED is OFF;
353
354 **LT22222-L:**
355
356 * [1] DI2 channel is high input and DI2 LED is ON;
357 * [0] DI1 channel is low input;
358
359 * [0] DO3 channel output state
360 ** DO3 is float in case no load between DO3 and V+.;
361 ** DO3 is high in case there is load between DO3 and V+.
362 ** DO3 LED is off in both case
363 * [1] DO2 channel output is low and DO2 LED is ON.
364 * [0] DO1 channel output state
365 ** DO1 is float in case no load between DO1 and V+.;
366 ** DO1 is high in case there is load between DO1 and V+.
367 ** DO1 LED is off in both case
368
369
370
371
372
373 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
374
375
376 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
377
378 (((
379 Total : 11 bytes payload
380 )))
381
382 [[image:image-20220523180452-3.png]]
383
384
385 (((
386 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
387 )))
388
389 [[image:image-20220523180506-4.png]]
390
391 * RO is for relay. ROx=1 : close,ROx=0 always open.
392 * FIRST: Indicate this is the first packet after join network.
393 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
394
395 (((
396 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
397 )))
398
399 (((
400
401
402 **To use counting mode, please run:**
403 )))
404
405 (% class="box infomessage" %)
406 (((
407 (((
408 **AT+MOD=2**
409
410 **ATZ**
411 )))
412 )))
413
414 (((
415
416
417 (% style="color:#4f81bd" %)**AT Commands for counting:**
418 )))
419
420 (((
421 **For LT22222-L:**
422
423
424 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
425
426 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
427
428 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
429
430 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
431
432 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
433
434 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
435 )))
436
437
438
439 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
440
441
442 **LT22222-L**: This mode the DI1 is used as a counting pin.
443
444 [[image:image-20220523181246-5.png]]
445
446 (((
447
448
449 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
450 )))
451
452 [[image:image-20220523181301-6.png]]
453
454 * RO is for relay. ROx=1 : close,ROx=0 always open.
455 * FIRST: Indicate this is the first packet after join network.
456 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
457
458 (((
459 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
460 )))
461
462
463 (((
464 **To use counting mode, please run:**
465 )))
466
467 (% class="box infomessage" %)
468 (((
469 (((
470 **AT+MOD=3**
471
472 **ATZ**
473 )))
474 )))
475
476 (((
477 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
478 )))
479
480
481
482 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
483
484
485 **LT22222-L**: This mode the DI1 is used as a counting pin.
486
487 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
488
489 [[image:image-20220523181903-8.png]]
490
491
492 (((
493 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
494 )))
495
496 [[image:image-20220523181727-7.png]]
497
498 * RO is for relay. ROx=1 : close,ROx=0 always open.
499 * FIRST: Indicate this is the first packet after join network.
500 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
501
502 (((
503 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
504 )))
505
506 (((
507
508
509 **To use this mode, please run:**
510 )))
511
512 (% class="box infomessage" %)
513 (((
514 (((
515 **AT+MOD=4**
516
517 **ATZ**
518 )))
519 )))
520
521
522
523 (((
524 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
525 )))
526
527 (((
528
529
530 **Plus below command for AVI1 Counting:**
531
532
533 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
534
535 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
536
537 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
538
539 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
540 )))
541
542
543
544 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
545
546
547 **LT22222-L**: This mode the DI1 is used as a counting pin.
548
549 [[image:image-20220523182334-9.png]]
550
551 (((
552
553
554 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
555 )))
556
557 * RO is for relay. ROx=1 : close,ROx=0 always open.
558 * FIRST: Indicate this is the first packet after join network.
559 * (((
560 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
561 )))
562
563 (((
564 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
565 )))
566
567 (((
568
569
570 **To use this mode, please run:**
571 )))
572
573 (% class="box infomessage" %)
574 (((
575 (((
576 **AT+MOD=5**
577
578 **ATZ**
579 )))
580 )))
581
582 (((
583 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
584 )))
585
586
587
588 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
589
590
591 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
592
593 For example, if user has configured below commands:
594
595 * **AT+MOD=1 ** **~-~->**  The normal working mode
596 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
597
598 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
599
600 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
601 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
602
603 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
604
605
606 (% style="color:#4f81bd" %)**Trigger base on voltage**:
607
608 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
609
610 **Example:**
611
612 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
613
614 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
615
616
617
618 (% style="color:#4f81bd" %)**Trigger base on current**:
619
620 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
621
622 **Example:**
623
624 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
625
626
627
628 (% style="color:#4f81bd" %)**Trigger base on DI status**:
629
630 DI status trigger Flag.
631
632 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
633
634
635 **Example:**
636
637 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
638
639
640 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
641
642 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
643
644 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
645
646 AA: Code for this downlink Command:
647
648 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
649
650 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
651
652 yy2 yy2: AC1 or AV1 high limit.
653
654 yy3 yy3: AC2 or AV2 low limit.
655
656 Yy4 yy4: AC2 or AV2 high limit.
657
658
659 **Example1**: AA 00 13 88 00 00 00 00 00 00
660
661 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
662
663
664 **Example2**: AA 02 01 00
665
666 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
667
668
669
670 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
671
672 MOD6 Payload : total 11 bytes payload
673
674 [[image:image-20220524085923-1.png]]
675
676
677 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
678
679 [[image:image-20220524090106-2.png]]
680
681 * Each bits shows if the corresponding trigger has been configured.
682
683 **Example:**
684
685 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
686
687
688 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
689
690 [[image:image-20220524090249-3.png]]
691
692 * Each bits shows which status has been trigger on this uplink.
693
694 **Example:**
695
696 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
697
698
699 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
700
701 [[image:image-20220524090456-4.png]]
702
703 * Each bits shows which status has been trigger on this uplink.
704
705 **Example:**
706
707 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
708
709 00000101: Means both DI1 and DI2 trigger are enabled.
710
711
712 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
713
714 Downlink command to poll MOD6 status:
715
716 **AB 06**
717
718 When device got this command, it will send the MOD6 payload.
719
720
721
722 === 3.3.7 Payload Decoder ===
723
724 (((
725
726
727 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
728 )))
729
730
731
732 == 3.4 ​Configure LT via AT or Downlink ==
733
734
735 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
736
737 (((
738 There are two kinds of Commands:
739 )))
740
741 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
742
743 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
744
745
746
747
748 === 3.4.1 Common Commands ===
749
750
751 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
752
753
754
755 === 3.4.2 Sensor related commands ===
756
757
758 ==== 3.4.2.1 Set Transmit Interval ====
759
760
761 Set device uplink interval.
762
763 * (% style="color:#037691" %)**AT Command:**
764
765 **AT+TDC=N **
766
767
768 **Example: **AT+TDC=30000. Means set interval to 30 seconds
769
770
771 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
772
773 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
774
775
776
777
778 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
779
780
781 Set work mode.
782
783 * (% style="color:#037691" %)**AT Command:**
784
785 **AT+MOD=N  **
786
787
788 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
789
790
791 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
792
793 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
794
795
796
797
798 ==== 3.4.2.3 Poll an uplink ====
799
800
801 * (% style="color:#037691" %)**AT Command:**
802
803 There is no AT Command to poll uplink
804
805
806 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
807
808 **0x08 FF     **~/~/ Poll an uplink
809
810 **Example**: 0x08FF, ask device to send an Uplink
811
812
813
814
815 ==== 3.4.2.4 Enable Trigger Mode ====
816
817
818 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
819
820 * (% style="color:#037691" %)**AT Command:**
821
822 **AT+ADDMOD6=1 or 0**
823
824 1: Enable Trigger Mode
825
826 0: Disable Trigger Mode
827
828
829 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
830
831 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
832
833
834
835
836 ==== 3.4.2.5 Poll trigger settings ====
837
838
839 Poll trigger settings,
840
841 * (% style="color:#037691" %)**AT Command:**
842
843 There is no AT Command for this feature.
844
845
846 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
847
848 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
849
850
851
852
853 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
854
855
856 Enable Disable DI1/DI2/DI2 as trigger,
857
858 * (% style="color:#037691" %)**AT Command:**
859
860 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
861
862
863 **Example:**
864
865 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
866
867 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
868
869 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
870
871
872
873
874 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
875
876
877 Set DI1 or DI3(for LT-33222-L) trigger.
878
879 * (% style="color:#037691" %)**AT Command:**
880
881 **AT+TRIG1=a,b**
882
883 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
884
885 b : delay timing.
886
887
888 **Example:**
889
890 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
891
892
893 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
894 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
895
896
897
898
899
900 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
901
902
903 Set DI2 trigger.
904
905 * (% style="color:#037691" %)**AT Command:**
906
907 **AT+TRIG2=a,b**
908
909
910 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
911
912 b : delay timing.
913
914
915 **Example:**
916
917 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
918
919
920 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
921
922 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
923
924
925
926
927 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
928
929
930 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
931
932 * (% style="color:#037691" %)**AT Command**
933
934 **AT+ACLIM**
935
936
937 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
938
939 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
940
941
942
943
944 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
945
946
947 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
948
949 * (% style="color:#037691" %)**AT Command**
950
951 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
952
953
954 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
955
956 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
957
958
959
960
961 ==== 3.4.2.11 Trigger – Set minimum interval ====
962
963
964 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
965
966 * (% style="color:#037691" %)**AT Command**
967
968 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
969
970
971 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
972
973 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
974
975 (((
976
977
978 (% style="color:red" %)Note: ATDC setting must be more than 5min
979 )))
980
981
982
983
984 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
985
986
987 * (% style="color:#037691" %)**AT Command**
988
989 There is no AT Command to control Digital Output
990
991
992 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
993 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
994
995 (((
996 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
997 )))
998
999 (((
1000 01: Low,  00: High ,  11: No action
1001 )))
1002
1003 [[image:image-20220524092754-5.png]]
1004
1005 (((
1006 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
1007 )))
1008
1009 (((
1010 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
1011 )))
1012
1013
1014
1015
1016 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1017
1018
1019 * (% style="color:#037691" %)**AT Command**
1020
1021 There is no AT Command to control Digital Output
1022
1023
1024 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1025
1026 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1027
1028
1029 This is to control the digital output time of DO pin. Include four bytes:
1030
1031 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1032
1033 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1034
1035 01: DO pins will change back to original state after timeout.
1036
1037 00: DO pins will change to an inverter state after timeout 
1038
1039
1040 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1041
1042 [[image:image-20220524093238-6.png]]
1043
1044
1045 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1046
1047 [[image:image-20220524093328-7.png]]
1048
1049
1050 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1051
1052 [[image:image-20220524093351-8.png]]
1053
1054
1055 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1056
1057 Latching time. Unit: ms
1058
1059 Device will upload a packet if downlink code executes successfully.
1060
1061
1062 **Example payload:**
1063
1064 **~1. A9 01 01 01 01 07 D0**
1065
1066 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1067
1068 **2. A9 01 00 01 11 07 D0**
1069
1070 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1071
1072 **3. A9 00 00 00 00 07 D0**
1073
1074 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1075
1076 **4. A9 00 11 01 00 07 D0**
1077
1078 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1079
1080
1081
1082
1083 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1084
1085
1086 * (% style="color:#037691" %)**AT Command:**
1087
1088 There is no AT Command to control Relay Output
1089
1090
1091 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1092
1093 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1094
1095
1096 (((
1097 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1098 )))
1099
1100 (((
1101 01: Close ,  00: Open , 11: No action
1102 )))
1103
1104 (((
1105 [[image:image-20220524093724-9.png]]
1106 )))
1107
1108 Device will upload a packet if downlink code executes successfully.
1109
1110
1111
1112
1113 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1114
1115
1116 * (% style="color:#037691" %)**AT Command:**
1117
1118 There is no AT Command to control Relay Output
1119
1120
1121 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1122
1123 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1124
1125
1126 This is to control the relay output time of relay. Include four bytes:
1127
1128 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1129
1130 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1131
1132 01: Relays will change back to original state after timeout.
1133
1134 00: Relays will change to an inverter state after timeout
1135
1136
1137 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1138
1139 [[image:image-20220714135731-1.png||height="406" width="627"]]
1140
1141
1142 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1143
1144 Device will upload a packet if downlink code executes successfully.
1145
1146
1147 **Example payload:**
1148
1149 **~1. 05 01 11 07 D**
1150
1151 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1152
1153 **2. 05 01 10 07 D0**
1154
1155 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1156
1157 **3. 05 00 01 07 D0**
1158
1159 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1160
1161 **4. 05 00 00 07 D0**
1162
1163 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1164
1165
1166
1167
1168 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1169
1170
1171 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1172
1173 * (% style="color:#037691" %)**AT Command:**
1174
1175 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1176
1177
1178 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1179
1180 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1181
1182
1183
1184
1185 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1186
1187
1188 * (% style="color:#037691" %)**AT Command:**
1189
1190 **AT+SETCNT=aa,(bb cc dd ee) **
1191
1192 aa: 1: Set count1,
1193
1194 2: Set count2,
1195
1196 3: Set AV1 count
1197
1198 Bb cc dd ee: number to be set
1199
1200
1201 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1202
1203 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1204
1205
1206
1207
1208 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1209
1210
1211 Clear counting for counting mode
1212
1213 * (% style="color:#037691" %)**AT Command:**
1214
1215 **AT+CLRCOUNT ** ~/~/ clear all counting
1216
1217
1218 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1219
1220 **0x A6 01    ** ~/~/ clear all counting
1221
1222
1223
1224
1225 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1226
1227
1228 * (% style="color:#037691" %)**AT Command:**
1229
1230 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1231
1232
1233 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1234
1235 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1236
1237 (((
1238 range: aa bb cc:0 to 16777215,  (unit:second)
1239
1240
1241 )))
1242
1243
1244
1245 == 3.5 Integrate with Mydevice ==
1246
1247
1248 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1249
1250 (((
1251 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1252 )))
1253
1254 (((
1255 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1256
1257
1258 )))
1259
1260 [[image:image-20220719105525-1.png||height="377" width="677"]]
1261
1262
1263
1264 [[image:image-20220719110247-2.png||height="388" width="683"]]
1265
1266
1267 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1268
1269 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1270
1271 Search under The things network
1272
1273 [[image:1653356838789-523.png||height="337" width="740"]]
1274
1275
1276
1277 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1278
1279 [[image:image-20220524094909-1.png||height="335" width="729"]]
1280
1281
1282 [[image:image-20220524094909-2.png||height="337" width="729"]]
1283
1284
1285 [[image:image-20220524094909-3.png||height="338" width="727"]]
1286
1287
1288 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1289
1290
1291 [[image:image-20220524094909-5.png||height="341" width="734"]]
1292
1293
1294
1295 == 3.6 Interface Detail ==
1296
1297
1298 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1299
1300
1301 Support NPN Type sensor
1302
1303 [[image:1653356991268-289.png]]
1304
1305
1306
1307 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1308
1309
1310 (((
1311 The DI port of LT-22222-L can support NPN or PNP output sensor.
1312 )))
1313
1314 (((
1315 (((
1316 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1317
1318
1319 )))
1320 )))
1321
1322 [[image:1653357170703-587.png]]
1323
1324 (((
1325 (((
1326 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1327 )))
1328 )))
1329
1330 (((
1331
1332 )))
1333
1334 (((
1335 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1336 )))
1337
1338 (((
1339 This type of sensor will output a low signal GND when active.
1340 )))
1341
1342 * (((
1343 Connect sensor’s output to DI1-
1344 )))
1345 * (((
1346 Connect sensor’s VCC to DI1+.
1347 )))
1348
1349 (((
1350 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1351 )))
1352
1353 (((
1354 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1355 )))
1356
1357 (((
1358 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1359 )))
1360
1361 (((
1362
1363
1364
1365 )))
1366
1367 (((
1368 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1369 )))
1370
1371 (((
1372 This type of sensor will output a high signal (example 24v) when active.
1373 )))
1374
1375 * (((
1376 Connect sensor’s output to DI1+
1377 )))
1378 * (((
1379 Connect sensor’s GND DI1-.
1380 )))
1381
1382 (((
1383 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1384 )))
1385
1386 (((
1387 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1388 )))
1389
1390 (((
1391 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1392 )))
1393
1394 (((
1395
1396
1397
1398 )))
1399
1400 (((
1401 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1402 )))
1403
1404 (((
1405 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1406 )))
1407
1408 * (((
1409 Connect sensor’s output to DI1+ with a serial 50K resistor
1410 )))
1411 * (((
1412 Connect sensor’s GND DI1-.
1413 )))
1414
1415 (((
1416 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1417 )))
1418
1419 (((
1420 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1421 )))
1422
1423 (((
1424 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1425 )))
1426
1427
1428
1429 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1430
1431
1432 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1433
1434 [[image:1653357531600-905.png]]
1435
1436
1437
1438 === 3.6.4 Analog Input Interface ===
1439
1440
1441 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1442
1443
1444 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1445
1446 [[image:1653357592296-182.png]]
1447
1448 Example to connect a 4~~20mA sensor
1449
1450 We take the wind speed sensor as an example for reference only.
1451
1452
1453 **Specifications of the wind speed sensor:**
1454
1455 Red:  12~~24v
1456
1457 Yellow:  4~~20mA
1458
1459 Black:  GND
1460
1461
1462 **Connection diagram:**
1463
1464 [[image:1653357640609-758.png]]
1465
1466 [[image:1653357648330-671.png||height="155" width="733"]]
1467
1468
1469
1470 === 3.6.5 Relay Output ===
1471
1472
1473 (((
1474 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1475 )))
1476
1477 [[image:image-20220524100215-9.png]]
1478
1479 [[image:image-20220524100215-10.png||height="382" width="723"]]
1480
1481
1482
1483 == 3.7 LEDs Indicators ==
1484
1485
1486 [[image:image-20220524100748-11.png]]
1487
1488
1489
1490 = 4. Use AT Command =
1491
1492
1493 == 4.1 Access AT Command ==
1494
1495
1496 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1497
1498 [[image:1653358238933-385.png]]
1499
1500
1501 (((
1502 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1503 )))
1504
1505 [[image:1653358355238-883.png]]
1506
1507
1508 (((
1509 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1510 )))
1511
1512 (((
1513 AT+<CMD>?        : Help on <CMD>
1514 )))
1515
1516 (((
1517 AT+<CMD>         : Run <CMD>
1518 )))
1519
1520 (((
1521 AT+<CMD>=<value> : Set the value
1522 )))
1523
1524 (((
1525 AT+<CMD>=?       : Get the value
1526 )))
1527
1528 (((
1529 ATZ: Trig a reset of the MCU
1530 )))
1531
1532 (((
1533 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1534 )))
1535
1536 (((
1537 AT+DEUI: Get or Set the Device EUI
1538 )))
1539
1540 (((
1541 AT+DADDR: Get or Set the Device Address
1542 )))
1543
1544 (((
1545 AT+APPKEY: Get or Set the Application Key
1546 )))
1547
1548 (((
1549 AT+NWKSKEY: Get or Set the Network Session Key
1550 )))
1551
1552 (((
1553 AT+APPSKEY: Get or Set the Application Session Key
1554 )))
1555
1556 (((
1557 AT+APPEUI: Get or Set the Application EUI
1558 )))
1559
1560 (((
1561 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1562 )))
1563
1564 (((
1565 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1566 )))
1567
1568 (((
1569 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1570 )))
1571
1572 (((
1573 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1574 )))
1575
1576 (((
1577 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1578 )))
1579
1580 (((
1581 AT+RX2FQ: Get or Set the Rx2 window frequency
1582 )))
1583
1584 (((
1585 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1586 )))
1587
1588 (((
1589 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1590 )))
1591
1592 (((
1593 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1594 )))
1595
1596 (((
1597 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1598 )))
1599
1600 (((
1601 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1602 )))
1603
1604 (((
1605 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1606 )))
1607
1608 (((
1609 AT+NWKID: Get or Set the Network ID
1610 )))
1611
1612 (((
1613 AT+FCU: Get or Set the Frame Counter Uplink
1614 )))
1615
1616 (((
1617 AT+FCD: Get or Set the Frame Counter Downlink
1618 )))
1619
1620 (((
1621 AT+CLASS: Get or Set the Device Class
1622 )))
1623
1624 (((
1625 AT+JOIN: Join network
1626 )))
1627
1628 (((
1629 AT+NJS: Get OTAA Join Status
1630 )))
1631
1632 (((
1633 AT+SENDB: Send hexadecimal data along with the application port
1634 )))
1635
1636 (((
1637 AT+SEND: Send text data along with the application port
1638 )))
1639
1640 (((
1641 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1642 )))
1643
1644 (((
1645 AT+RECV: Print last received data in raw format
1646 )))
1647
1648 (((
1649 AT+VER: Get current image version and Frequency Band
1650 )))
1651
1652 (((
1653 AT+CFM: Get or Set the confirmation mode (0-1)
1654 )))
1655
1656 (((
1657 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1658 )))
1659
1660 (((
1661 AT+SNR: Get the SNR of the last received packet
1662 )))
1663
1664 (((
1665 AT+RSSI: Get the RSSI of the last received packet
1666 )))
1667
1668 (((
1669 AT+TDC: Get or set the application data transmission interval in ms
1670 )))
1671
1672 (((
1673 AT+PORT: Get or set the application port
1674 )))
1675
1676 (((
1677 AT+DISAT: Disable AT commands
1678 )))
1679
1680 (((
1681 AT+PWORD: Set password, max 9 digits
1682 )))
1683
1684 (((
1685 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1686 )))
1687
1688 (((
1689 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1690 )))
1691
1692 (((
1693 AT+CFG: Print all settings
1694 )))
1695
1696
1697
1698 == 4.2 Common AT Command Sequence ==
1699
1700
1701 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1702
1703 (((
1704
1705
1706 **If device has not joined network yet:**
1707 )))
1708
1709 (((
1710 (% style="background-color:#dcdcdc" %)123456
1711 )))
1712
1713 (((
1714 (% style="background-color:#dcdcdc" %)AT+FDR
1715 )))
1716
1717 (((
1718 (% style="background-color:#dcdcdc" %)123456
1719 )))
1720
1721 (((
1722 (% style="background-color:#dcdcdc" %)AT+NJM=0
1723 )))
1724
1725 (((
1726 (% style="background-color:#dcdcdc" %)ATZ
1727 )))
1728
1729
1730 (((
1731 **If device already joined network:**
1732 )))
1733
1734 (((
1735 (% style="background-color:#dcdcdc" %)AT+NJM=0
1736 )))
1737
1738 (((
1739 (% style="background-color:#dcdcdc" %)ATZ
1740 )))
1741
1742
1743
1744 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1745
1746 (((
1747
1748
1749 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1750 )))
1751
1752 (((
1753 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1754 )))
1755
1756 (((
1757 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1758 )))
1759
1760 (((
1761 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1762 )))
1763
1764 (((
1765 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1766 )))
1767
1768 (((
1769 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1770 )))
1771
1772 (((
1773 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1774 )))
1775
1776 (((
1777 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1778 )))
1779
1780 (((
1781 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1782 )))
1783
1784 (((
1785 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1786 )))
1787
1788 (((
1789 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1790 )))
1791
1792 (((
1793 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1794 )))
1795
1796 (((
1797 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1798
1799
1800 )))
1801
1802 (((
1803 (% style="color:red" %)**Note:**
1804 )))
1805
1806 (((
1807 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1808 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1809 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1810 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1811
1812
1813 )))
1814
1815 (((
1816 [[image:1653359097980-169.png||height="188" width="729"]]
1817 )))
1818
1819 (((
1820
1821 )))
1822
1823
1824 === 4.2.3 Change to Class A ===
1825
1826
1827 If sensor JOINED
1828 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1829 ATZ
1830
1831
1832
1833 = 5. FAQ =
1834
1835
1836 == 5.1 How to upgrade the image? ==
1837
1838
1839 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1840
1841 * Support new features
1842 * For bug fix
1843 * Change LoRaWAN bands.
1844
1845 Below shows the hardware connection for how to upload an image to the LT:
1846
1847 [[image:1653359603330-121.png]]
1848
1849
1850 (((
1851 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1852 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1853 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1854
1855
1856 (% style="color:blue" %)**For LT-22222-L**(%%):
1857 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1858
1859
1860 )))
1861
1862 [[image:image-20220524103407-12.png]]
1863
1864 [[image:image-20220524103429-13.png]]
1865
1866 [[image:image-20220524104033-15.png]]
1867
1868
1869 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1870
1871
1872 [[image:1653360054704-518.png||height="186" width="745"]]
1873
1874
1875 (((
1876 (((
1877
1878
1879 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1880
1881
1882 )))
1883 )))
1884
1885 (((
1886 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1887 )))
1888
1889 (((
1890
1891
1892
1893 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1894
1895
1896 )))
1897
1898 (((
1899 (((
1900 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1901 )))
1902 )))
1903
1904 (((
1905 (((
1906 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1907
1908
1909 )))
1910 )))
1911
1912 (((
1913 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1914 )))
1915
1916 (((
1917 [[image:1653360231087-571.png||height="401" width="727"]]
1918 )))
1919
1920 (((
1921 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1922 )))
1923
1924
1925 (((
1926 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1931 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1932 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1933 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1934 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1935 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1936 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1937 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1938 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1939 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1940 )))
1941
1942
1943 (((
1944 As shown in below:
1945 )))
1946
1947 [[image:1653360498588-932.png||height="485" width="726"]]
1948
1949
1950
1951 == 5.4 Can I see counting event in Serial? ==
1952
1953
1954 (((
1955 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
1956
1957
1958
1959 == 5.5 Can i use point to point communication for LT-22222-L? ==
1960
1961
1962 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1963
1964
1965
1966 )))
1967
1968 (((
1969 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1970
1971
1972 If the device is not shut down, but directly powered off.
1973
1974 It will default that this is a power-off state.
1975
1976 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1977
1978 After restart, the status before power failure will be read from flash.
1979
1980
1981
1982 = 6. Trouble Shooting =
1983 )))
1984
1985 (((
1986 (((
1987 == 6.1 Downlink doesn't work, how to solve it? ==
1988
1989
1990 )))
1991 )))
1992
1993 (((
1994 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1995 )))
1996
1997 (((
1998
1999
2000
2001 == 6.2 Have trouble to upload image. ==
2002
2003
2004 )))
2005
2006 (((
2007 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2008 )))
2009
2010 (((
2011
2012
2013
2014 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2015
2016
2017 )))
2018
2019 (((
2020 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2021 )))
2022
2023
2024
2025 = 7. Order Info =
2026
2027
2028 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2029
2030 (% style="color:#4f81bd" %)**XXX:**
2031
2032 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2033 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2034 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2035 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2036 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2037 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2038 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2039 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2040 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2041
2042
2043
2044 = 8. Packing Info =
2045
2046
2047 **Package Includes**:
2048
2049 * LT-22222-L I/O Controller x 1
2050 * Stick Antenna for LoRa RF part x 1
2051 * Bracket for controller x1
2052 * Program cable x 1
2053
2054 **Dimension and weight**:
2055
2056 * Device Size: 13.5 x 7 x 3 cm
2057 * Device Weight: 105g
2058 * Package Size / pcs : 14.5 x 8 x 5 cm
2059 * Weight / pcs : 170g
2060
2061
2062
2063 = 9. Support =
2064
2065
2066 * (((
2067 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2068 )))
2069 * (((
2070 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2071
2072
2073
2074
2075 )))
2076
2077 = 10. Reference​​​​​ =
2078
2079
2080 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2081 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2082 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2083
2084
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0