Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61 == 1.3  Probe Specification ==
62
63 * Storage temperature :-20℃~~75℃
64 * Operating temperature - -20℃~~60℃
65 * Operating Range - 0.1m~~12m①
66 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
67 * Distance resolution - 5mm
68 * Ambient light immunity - 70klux
69 * Enclosure rating - IP65
70 * Light source - LED
71 * Central wavelength - 850nm
72 * FOV - 3.6°
73 * Material of enclosure - ABS+PC
74 * Wire length - 25cm
75
76 == 1.4  Probe Dimension ==
77
78
79 [[image:1654827224480-952.png]]
80
81
82 == 1.5 ​ Applications ==
83
84 * Horizontal distance measurement
85 * Parking management system
86 * Object proximity and presence detection
87 * Intelligent trash can management system
88 * Robot obstacle avoidance
89 * Automatic control
90 * Sewer
91
92 == 1.6  Pin mapping and power on ==
93
94
95 [[image:1654827332142-133.png]]
96
97
98 = 2.  Configure LLDS12 to connect to LoRaWAN network =
99
100 == 2.1  How it works ==
101
102 (((
103 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
104 )))
105
106 (((
107 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
108 )))
109
110
111 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
112
113 (((
114 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
115 )))
116
117 (((
118 [[image:1654827857527-556.png]]
119 )))
120
121 (((
122 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
123 )))
124
125 (((
126 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
127 )))
128
129 (((
130 Each LSPH01 is shipped with a sticker with the default device EUI as below:
131 )))
132
133 [[image:image-20220607170145-1.jpeg]]
134
135
136
137 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
138
139
140 **Register the device**
141
142
143 [[image:1654592600093-601.png]]
144
145
146
147 **Add APP EUI and DEV EUI**
148
149 [[image:1654592619856-881.png]]
150
151
152
153 **Add APP EUI in the application**
154
155 [[image:1654592632656-512.png]]
156
157
158
159 **Add APP KEY**
160
161 [[image:1654592653453-934.png]]
162
163
164 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
165
166
167 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
168
169 [[image:image-20220607170442-2.png]]
170
171
172 (((
173 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
174 )))
175
176 [[image:1654833501679-968.png]]
177
178
179
180 == 2.3  ​Uplink Payload ==
181
182 (((
183 LLDS12 will uplink payload via LoRaWAN with below payload format: 
184 )))
185
186 (((
187 Uplink payload includes in total 11 bytes.
188 )))
189
190 (((
191
192 )))
193
194 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
195 |=(% style="width: 62.5px;" %)(((
196 **Size (bytes)**
197 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
198 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
199 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
200 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
201 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
202 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
203 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
204 )))
205
206 [[image:1654833689380-972.png]]
207
208
209
210 === 2.3.1  Battery Info ===
211
212
213 Check the battery voltage for LLDS12.
214
215 Ex1: 0x0B45 = 2885mV
216
217 Ex2: 0x0B49 = 2889mV
218
219
220
221 === 2.3.2  DS18B20 Temperature sensor ===
222
223 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
224
225
226 **Example**:
227
228 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
229
230 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
231
232
233
234 === 2.3.3  Distance ===
235
236 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
237
238
239 **Example**:
240
241 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
242
243
244
245 === 2.3.4  Distance signal strength ===
246
247 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
248
249
250 **Example**:
251
252 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
253
254 Customers can judge whether they need to adjust the environment based on the signal strength.
255
256
257
258 === 2.3.5  Interrupt Pin ===
259
260 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
261
262 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
263
264 **Example:**
265
266 0x00: Normal uplink packet.
267
268 0x01: Interrupt Uplink Packet.
269
270
271
272 === 2.3.6  LiDAR temp ===
273
274 Characterize the internal temperature value of the sensor.
275
276 **Example: **
277 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
278 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
279
280
281
282 === 2.3.7  Message Type ===
283
284 (((
285 For a normal uplink payload, the message type is always 0x01.
286 )))
287
288 (((
289 Valid Message Type:
290 )))
291
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
294 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
295 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
296 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
297
298 === 2.3.8  Decode payload in The Things Network ===
299
300 While using TTN network, you can add the payload format to decode the payload.
301
302
303 [[image:1654592762713-715.png]]
304
305 (((
306 The payload decoder function for TTN is here:
307 )))
308
309 (((
310 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
311 )))
312
313
314
315 == 2.4  Uplink Interval ==
316
317 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
318
319
320
321 == 2.5  ​Show Data in DataCake IoT Server ==
322
323 (((
324 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
325 )))
326
327 (((
328
329 )))
330
331 (((
332 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
333 )))
334
335 (((
336 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
337 )))
338
339
340 [[image:1654592790040-760.png]]
341
342
343 [[image:1654592800389-571.png]]
344
345
346 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
347
348 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
349
350 [[image:1654832691989-514.png]]
351
352
353 [[image:1654592833877-762.png]]
354
355
356 [[image:1654832740634-933.png]]
357
358
359
360 (((
361 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
362 )))
363
364 (((
365
366 )))
367
368 [[image:1654833065139-942.png]]
369
370
371
372 [[image:1654833092678-390.png]]
373
374
375
376 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
377
378 [[image:1654833163048-332.png]]
379
380
381
382 == 2.6  Frequency Plans ==
383
384 (((
385 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
386 )))
387
388
389 === 2.6.1  EU863-870 (EU868) ===
390
391 (((
392 (% style="color:blue" %)**Uplink:**
393 )))
394
395 (((
396 868.1 - SF7BW125 to SF12BW125
397 )))
398
399 (((
400 868.3 - SF7BW125 to SF12BW125 and SF7BW250
401 )))
402
403 (((
404 868.5 - SF7BW125 to SF12BW125
405 )))
406
407 (((
408 867.1 - SF7BW125 to SF12BW125
409 )))
410
411 (((
412 867.3 - SF7BW125 to SF12BW125
413 )))
414
415 (((
416 867.5 - SF7BW125 to SF12BW125
417 )))
418
419 (((
420 867.7 - SF7BW125 to SF12BW125
421 )))
422
423 (((
424 867.9 - SF7BW125 to SF12BW125
425 )))
426
427 (((
428 868.8 - FSK
429 )))
430
431 (((
432
433 )))
434
435 (((
436 (% style="color:blue" %)**Downlink:**
437 )))
438
439 (((
440 Uplink channels 1-9 (RX1)
441 )))
442
443 (((
444 869.525 - SF9BW125 (RX2 downlink only)
445 )))
446
447
448
449 === 2.6.2  US902-928(US915) ===
450
451 (((
452 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
453 )))
454
455 (((
456 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
457 )))
458
459 (((
460 After Join success, the end node will switch to the correct sub band by:
461 )))
462
463 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
464 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
465
466 === 2.6.3  CN470-510 (CN470) ===
467
468 (((
469 Used in China, Default use CHE=1
470 )))
471
472 (((
473 (% style="color:blue" %)**Uplink:**
474 )))
475
476 (((
477 486.3 - SF7BW125 to SF12BW125
478 )))
479
480 (((
481 486.5 - SF7BW125 to SF12BW125
482 )))
483
484 (((
485 486.7 - SF7BW125 to SF12BW125
486 )))
487
488 (((
489 486.9 - SF7BW125 to SF12BW125
490 )))
491
492 (((
493 487.1 - SF7BW125 to SF12BW125
494 )))
495
496 (((
497 487.3 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 487.5 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 487.7 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509
510 )))
511
512 (((
513 (% style="color:blue" %)**Downlink:**
514 )))
515
516 (((
517 506.7 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 506.9 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 507.1 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529 507.3 - SF7BW125 to SF12BW125
530 )))
531
532 (((
533 507.5 - SF7BW125 to SF12BW125
534 )))
535
536 (((
537 507.7 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 507.9 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 508.1 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 505.3 - SF12BW125 (RX2 downlink only)
550 )))
551
552
553
554
555 === 2.6.4  AU915-928(AU915) ===
556
557 (((
558 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
559 )))
560
561 (((
562 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
563 )))
564
565 (((
566
567 )))
568
569 (((
570 After Join success, the end node will switch to the correct sub band by:
571 )))
572
573 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
574 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
575
576 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
577
578 (((
579 (% style="color:blue" %)**Default Uplink channel:**
580 )))
581
582 (((
583 923.2 - SF7BW125 to SF10BW125
584 )))
585
586 (((
587 923.4 - SF7BW125 to SF10BW125
588 )))
589
590 (((
591
592 )))
593
594 (((
595 (% style="color:blue" %)**Additional Uplink Channel**:
596 )))
597
598 (((
599 (OTAA mode, channel added by JoinAccept message)
600 )))
601
602 (((
603
604 )))
605
606 (((
607 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
608 )))
609
610 (((
611 922.2 - SF7BW125 to SF10BW125
612 )))
613
614 (((
615 922.4 - SF7BW125 to SF10BW125
616 )))
617
618 (((
619 922.6 - SF7BW125 to SF10BW125
620 )))
621
622 (((
623 922.8 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 923.0 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 922.0 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635
636 )))
637
638 (((
639 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
640 )))
641
642 (((
643 923.6 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647 923.8 - SF7BW125 to SF10BW125
648 )))
649
650 (((
651 924.0 - SF7BW125 to SF10BW125
652 )))
653
654 (((
655 924.2 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 924.4 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 924.6 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667
668 )))
669
670 (((
671 (% style="color:blue" %)**Downlink:**
672 )))
673
674 (((
675 Uplink channels 1-8 (RX1)
676 )))
677
678 (((
679 923.2 - SF10BW125 (RX2)
680 )))
681
682
683
684
685 === 2.6.6  KR920-923 (KR920) ===
686
687 (((
688 (% style="color:blue" %)**Default channel:**
689 )))
690
691 (((
692 922.1 - SF7BW125 to SF12BW125
693 )))
694
695 (((
696 922.3 - SF7BW125 to SF12BW125
697 )))
698
699 (((
700 922.5 - SF7BW125 to SF12BW125
701 )))
702
703 (((
704
705 )))
706
707 (((
708 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
709 )))
710
711 (((
712 922.1 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716 922.3 - SF7BW125 to SF12BW125
717 )))
718
719 (((
720 922.5 - SF7BW125 to SF12BW125
721 )))
722
723 (((
724 922.7 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.9 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 923.1 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 923.3 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740
741 )))
742
743 (((
744 (% style="color:blue" %)**Downlink:**
745 )))
746
747 (((
748 Uplink channels 1-7(RX1)
749 )))
750
751 (((
752 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
753 )))
754
755
756
757
758 === 2.6.7  IN865-867 (IN865) ===
759
760 (((
761 (% style="color:blue" %)**Uplink:**
762 )))
763
764 (((
765 865.0625 - SF7BW125 to SF12BW125
766 )))
767
768 (((
769 865.4025 - SF7BW125 to SF12BW125
770 )))
771
772 (((
773 865.9850 - SF7BW125 to SF12BW125
774 )))
775
776 (((
777
778 )))
779
780 (((
781 (% style="color:blue" %)**Downlink:**
782 )))
783
784 (((
785 Uplink channels 1-3 (RX1)
786 )))
787
788 (((
789 866.550 - SF10BW125 (RX2)
790 )))
791
792
793
794
795 == 2.7  LED Indicator ==
796
797 The LLDS12 has an internal LED which is to show the status of different state.
798
799 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
800 * Blink once when device transmit a packet.
801
802 == 2.8  ​Firmware Change Log ==
803
804
805 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
806
807
808 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
809
810
811
812 = 3.  LiDAR ToF Measurement =
813
814 == 3.1 Principle of Distance Measurement ==
815
816 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
817
818 [[image:1654831757579-263.png]]
819
820
821
822 == 3.2 Distance Measurement Characteristics ==
823
824 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
825
826 [[image:1654831774373-275.png]]
827
828
829 (((
830 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
831 )))
832
833 (((
834 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
835 )))
836
837 (((
838 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
839 )))
840
841
842 (((
843 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
844 )))
845
846
847 [[image:1654831797521-720.png]]
848
849
850 (((
851 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
852 )))
853
854 [[image:1654831810009-716.png]]
855
856
857 (((
858 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
859 )))
860
861
862
863 == 3.3 Notice of usage: ==
864
865 Possible invalid /wrong reading for LiDAR ToF tech:
866
867 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
868 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
869 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
870 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
871
872 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
873
874 (((
875 (((
876 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
877 )))
878 )))
879
880 * (((
881 (((
882 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
883 )))
884 )))
885 * (((
886 (((
887 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
888 )))
889 )))
890
891 (((
892 (((
893
894 )))
895
896 (((
897 There are two kinds of commands to configure LLDS12, they are:
898 )))
899 )))
900
901 * (((
902 (((
903 (% style="color:#4f81bd" %)** General Commands**.
904 )))
905 )))
906
907 (((
908 (((
909 These commands are to configure:
910 )))
911 )))
912
913 * (((
914 (((
915 General system settings like: uplink interval.
916 )))
917 )))
918 * (((
919 (((
920 LoRaWAN protocol & radio related command.
921 )))
922 )))
923
924 (((
925 (((
926 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
927 )))
928 )))
929
930 (((
931 (((
932
933 )))
934 )))
935
936 * (((
937 (((
938 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
939 )))
940 )))
941
942 (((
943 (((
944 These commands only valid for LLDS12, as below:
945 )))
946 )))
947
948
949
950 == 4.1  Set Transmit Interval Time ==
951
952 Feature: Change LoRaWAN End Node Transmit Interval.
953
954 (% style="color:#037691" %)**AT Command: AT+TDC**
955
956 [[image:image-20220607171554-8.png]]
957
958
959 (((
960 (% style="color:#037691" %)**Downlink Command: 0x01**
961 )))
962
963 (((
964 Format: Command Code (0x01) followed by 3 bytes time value.
965 )))
966
967 (((
968 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
969 )))
970
971 * (((
972 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
973 )))
974 * (((
975 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
976 )))
977
978 == 4.2  Set Interrupt Mode ==
979
980 Feature, Set Interrupt mode for GPIO_EXIT.
981
982 (% style="color:#037691" %)**AT Command: AT+INTMOD**
983
984 [[image:image-20220610105806-2.png]]
985
986
987 (((
988 (% style="color:#037691" %)**Downlink Command: 0x06**
989 )))
990
991 (((
992 Format: Command Code (0x06) followed by 3 bytes.
993 )))
994
995 (((
996 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
997 )))
998
999 * (((
1000 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1001 )))
1002 * (((
1003 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1004 )))
1005
1006 == 4.3  Get Firmware Version Info ==
1007
1008 Feature: use downlink to get firmware version.
1009
1010 (% style="color:#037691" %)**Downlink Command: 0x26**
1011
1012 [[image:image-20220607171917-10.png]]
1013
1014 * Reply to the confirmation package: 26 01
1015 * Reply to non-confirmed packet: 26 00
1016
1017 Device will send an uplink after got this downlink command. With below payload:
1018
1019 Configures info payload:
1020
1021 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1022 |=(((
1023 **Size(bytes)**
1024 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1025 |**Value**|Software Type|(((
1026 Frequency
1027
1028 Band
1029 )))|Sub-band|(((
1030 Firmware
1031
1032 Version
1033 )))|Sensor Type|Reserve|(((
1034 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1035 Always 0x02
1036 )))
1037
1038 **Software Type**: Always 0x03 for LLDS12
1039
1040
1041 **Frequency Band**:
1042
1043 *0x01: EU868
1044
1045 *0x02: US915
1046
1047 *0x03: IN865
1048
1049 *0x04: AU915
1050
1051 *0x05: KZ865
1052
1053 *0x06: RU864
1054
1055 *0x07: AS923
1056
1057 *0x08: AS923-1
1058
1059 *0x09: AS923-2
1060
1061 *0xa0: AS923-3
1062
1063
1064 **Sub-Band**: value 0x00 ~~ 0x08
1065
1066
1067 **Firmware Version**: 0x0100, Means: v1.0.0 version
1068
1069
1070 **Sensor Type**:
1071
1072 0x01: LSE01
1073
1074 0x02: LDDS75
1075
1076 0x03: LDDS20
1077
1078 0x04: LLMS01
1079
1080 0x05: LSPH01
1081
1082 0x06: LSNPK01
1083
1084 0x07: LLDS12
1085
1086
1087
1088 = 5.  Battery & How to replace =
1089
1090 == 5.1  Battery Type ==
1091
1092 (((
1093 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1094 )))
1095
1096 (((
1097 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1098 )))
1099
1100 [[image:1654593587246-335.png]]
1101
1102
1103 Minimum Working Voltage for the LLDS12:
1104
1105 LLDS12:  2.45v ~~ 3.6v
1106
1107
1108
1109 == 5.2  Replace Battery ==
1110
1111 (((
1112 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1113 )))
1114
1115 (((
1116 And make sure the positive and negative pins match.
1117 )))
1118
1119
1120
1121 == 5.3  Power Consumption Analyze ==
1122
1123 (((
1124 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1125 )))
1126
1127 (((
1128 Instruction to use as below:
1129 )))
1130
1131
1132 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1133
1134 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1135
1136
1137 **Step 2**: Open it and choose
1138
1139 * Product Model
1140 * Uplink Interval
1141 * Working Mode
1142
1143 And the Life expectation in difference case will be shown on the right.
1144
1145 [[image:1654593605679-189.png]]
1146
1147
1148 The battery related documents as below:
1149
1150 * (((
1151 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1152 )))
1153 * (((
1154 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1155 )))
1156 * (((
1157 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1158 )))
1159
1160 [[image:image-20220607172042-11.png]]
1161
1162
1163
1164 === 5.3.1  ​Battery Note ===
1165
1166 (((
1167 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1168 )))
1169
1170
1171
1172 === ​5.3.2  Replace the battery ===
1173
1174 (((
1175 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1176 )))
1177
1178 (((
1179 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1180 )))
1181
1182
1183
1184 = 6.  Use AT Command =
1185
1186 == 6.1  Access AT Commands ==
1187
1188 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1189
1190 [[image:1654593668970-604.png]]
1191
1192 **Connection:**
1193
1194 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1195
1196 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1197
1198 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1199
1200
1201 (((
1202 (((
1203 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1204 )))
1205
1206 (((
1207 LLDS12 will output system info once power on as below:
1208 )))
1209 )))
1210
1211
1212 [[image:1654593712276-618.png]]
1213
1214 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1215
1216
1217 = 7.  FAQ =
1218
1219 == 7.1  How to change the LoRa Frequency Bands/Region ==
1220
1221 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1222 When downloading the images, choose the required image file for download. ​
1223
1224
1225 = 8.  Trouble Shooting =
1226
1227 == 8.1  AT Commands input doesn’t work ==
1228
1229
1230 (((
1231 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1232 )))
1233
1234
1235 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1236
1237
1238 (((
1239 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1240 )))
1241
1242 (((
1243 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1244 )))
1245
1246 (((
1247
1248 )))
1249
1250 (((
1251 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1252 )))
1253
1254 (((
1255 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1256 )))
1257
1258
1259
1260 = 9.  Order Info =
1261
1262
1263 Part Number: (% style="color:blue" %)**LLDS12-XX**
1264
1265
1266 (% style="color:blue" %)**XX**(%%): The default frequency band
1267
1268 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1269 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1270 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1271 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1272 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1273 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1274 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1275 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1276
1277
1278 = 10. ​ Packing Info =
1279
1280
1281 **Package Includes**:
1282
1283 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1284
1285 **Dimension and weight**:
1286
1287 * Device Size: cm
1288 * Device Weight: g
1289 * Package Size / pcs : cm
1290 * Weight / pcs : g
1291
1292
1293 = 11.  ​Support =
1294
1295 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1296 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0