Show last authors
1 (% style="display:none" %) (%%) ​​​(% style="display:none" %)
2
3 (% style="text-align:center" %)
4 [[image:image-20220627094803-5.png||height="366" width="804"]]
5
6
7 (% style="display:none" %) (%%)
8
9
10
11
12
13
14
15 **Table of Contents:**
16
17 (% _mstaria-label="285168" aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
18 (((
19 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
20 )))
21
22 {{toc/}}
23
24
25
26
27
28
29
30
31
32
33 = 1.  Introduction =
34
35 == 1.1 ​ What is LSN50 LoRa Sensor Node ==
36
37
38 (((
39 (((
40 LSN50 is a Long Range LoRaWAN Sensor Node. It is designed for (% style="color:#4472c4" %)**outdoor data logging **(%%)and powered by (% style="color:#4472c4" %)**Li/SOCl2 battery**(%%) for long term use and secure data transmission. It is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
41 )))
42
43 (((
44 It is based on SX1276/SX1278 allows the user to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
45 )))
46
47 (((
48 (% style="color:#4472c4" %)**LSN50**(%%) uses STM32l0x chip from ST, STML0x is the (% style="color:#4472c4" %)**ultra-low-power**(%%) STM32L072xxxx microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.
49 )))
50
51 (((
52 LSN50 is an (% style="color:#4472c4" %)**open source product**(%%), it is based on the STM32Cube HAL drivers and lots of libraries can be found in ST site for rapid development.
53 )))
54 )))
55
56
57 [[image:1656294562709-486.png]]
58
59
60 == 1.2  Specifications ==
61
62
63 (% style="color:#037691" %)**Micro Controller:**
64
65
66 * MCU: STM32L072xxxx
67 * Flash: 128KB
68 * RAM: 20KB
69 * EEPROM: 6KB
70 * Clock Speed: 32Mhz
71
72 (% style="color:#037691" %)**Common DC Characteristics:**
73
74 * Supply Voltage: 2.1v ~~ 3.6v
75 * Operating Temperature: -40 ~~ 85°C
76 * I/O pins: Refer to [[STM32L072 datasheet>>https://www.st.com/resource/en/datasheet/stm32l072cz.pdf]]
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range,
81 ** Band 1 (HF): 862 ~~ 1020 Mhz
82 * or
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz .
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC.
99 * LoRaWAN 1.0.2 Specification
100
101 (% style="color:#037691" %)**Battery:**
102
103 * Li/SOCI2 un-chargeable battery
104 * Capacity: 4000mAh
105 * Self Discharge: <1% / Year @ 25°C
106 * Max continuously current: 130mA
107 * Max boost current: 2A, 1 second
108
109 (% style="color:#037691" %)**Power Consumption**
110
111 * STOP Mode: 2.7uA @ 3.3v
112 * LoRa Transmit Mode: 125mA @ 20dBm 44mA @ 14dBm
113
114 == ​1.3  Features ==
115
116
117 * LoRaWAN 1.0.3 Class A, Class C
118 * STM32L072xxxx MCU
119 * SX1276/78 Wireless Chip
120 * Pre-load bootloader on USART1/USART2
121 * MDK-ARM Version 5.24a IDE
122 * I2C, LPUSART1, USB, SPI2
123 * 3x12bit ADC, 1x12bit DAC
124 * 20xDigital I/Os
125 * LoRa™ Modem
126 * Preamble detection
127 * Baud rate configurable
128 * CN470/EU433/KR920/US915/IN865
129 * EU868/AS923/AU915/MA869
130 * Open-source hardware / software
131 * Available Band:433/868/915/920 Mhz
132 * IP66 Waterproof Enclosure
133 * Ultra-Low Power consumption
134 * AT Commands to change parameters
135 * 4000mAh or 8500mAh Battery for long term use.
136
137 == 1.4 ​ Applications ==
138
139
140 * Smart Cities
141 * Smart Factory
142 * Smart Metering
143 * Smart Agriculture
144 * Smart Buildings & Home Automation
145 * Logistics and Supply Chain Management
146
147 == 1.5  Pin Definitions and Switch ==
148
149
150 (% class="wikigeneratedid" %)
151 [[image:1656295519542-152.png||height="413" width="728"]]
152
153
154 (% class="wikigeneratedid" %)
155 [[image:1656295532863-613.png||height="371" width="721"]]
156
157
158 (% border="1" cellspacing="4" style="width:510px" %)
159 |=(% style="width: 30px;background-color:#4F81BD;color:white" %)**No.**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Signal**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Direction**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 170px;background-color:#4F81BD;color:white" %)Remark
160 |(% style="background-color:#f2f2f2; width:44px" %)1|(% style="background-color:#f2f2f2; width:86px" %)VCC(2.9V)|(% style="background-color:#f2f2f2; width:84px" %)OUTPUT|(% style="background-color:#f2f2f2; width:322px" %)VCC|(% style="background-color:#f2f2f2; width:296px" %)Directly connect to main power for board
161 |(% style="background-color:#f2f2f2; width:44px" %)2|(% style="background-color:#f2f2f2; width:86px" %)PA0|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)Used as ADC in LSN50 image
162 |(% style="background-color:#f2f2f2; width:44px" %)3|(% style="background-color:#f2f2f2; width:86px" %)PA1|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
163 |(% style="background-color:#f2f2f2; width:44px" %)4|(% style="background-color:#f2f2f2; width:86px" %)PA2|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)Used as UART_TXD in LSN50 image
164 |(% style="background-color:#f2f2f2; width:44px" %)5|(% style="background-color:#f2f2f2; width:86px" %)PA3|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)Used as UART_RXD in LSN50 image
165 |(% style="background-color:#f2f2f2; width:44px" %)6|(% style="background-color:#f2f2f2; width:86px" %)PB6|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
166 |(% style="background-color:#f2f2f2; width:44px" %)7|(% style="background-color:#f2f2f2; width:86px" %)PB7|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
167 |(% style="background-color:#f2f2f2; width:44px" %)8|(% style="background-color:#f2f2f2; width:86px" %)PB3|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
168 |(% style="background-color:#f2f2f2; width:44px" %)9|(% style="background-color:#f2f2f2; width:86px" %)PB4|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
169 |(% style="background-color:#f2f2f2; width:44px" %)10|(% style="background-color:#f2f2f2; width:86px" %)PA9|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
170 |(% style="background-color:#f2f2f2; width:44px" %)11|(% style="background-color:#f2f2f2; width:86px" %)PA10|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
171 |(% style="background-color:#f2f2f2; width:44px" %)12|(% style="background-color:#f2f2f2; width:86px" %)GND|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Ground|(% style="background-color:#f2f2f2; width:296px" %)
172 |(% style="background-color:#f2f2f2; width:44px" %)13|(% style="background-color:#f2f2f2; width:86px" %)VCC(2.9V)|(% style="background-color:#f2f2f2; width:84px" %)OUTPUT|(% style="background-color:#f2f2f2; width:322px" %)VCC|(% style="background-color:#f2f2f2; width:296px" %)Directly connect to main power for board
173 |(% style="background-color:#f2f2f2; width:44px" %)14|(% style="background-color:#f2f2f2; width:86px" %)Jumper|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Power on/off jumper|(% style="background-color:#f2f2f2; width:296px" %)
174 |(% style="background-color:#f2f2f2; width:44px" %)15|(% style="background-color:#f2f2f2; width:86px" %)PA4|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
175 |(% style="background-color:#f2f2f2; width:44px" %)16|(% style="background-color:#f2f2f2; width:86px" %)NRST|(% style="background-color:#f2f2f2; width:84px" %)In|(% style="background-color:#f2f2f2; width:322px" %)Reset MCU|(% style="background-color:#f2f2f2; width:296px" %)
176 |(% style="background-color:#f2f2f2; width:44px" %)17|(% style="background-color:#f2f2f2; width:86px" %)PA12|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
177 |(% style="background-color:#f2f2f2; width:44px" %)18|(% style="background-color:#f2f2f2; width:86px" %)PA11|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
178 |(% style="background-color:#f2f2f2; width:44px" %)19|(% style="background-color:#f2f2f2; width:86px" %)PA14|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
179 |(% style="background-color:#f2f2f2; width:44px" %)20|(% style="background-color:#f2f2f2; width:86px" %)PB13|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
180 |(% style="background-color:#f2f2f2; width:44px" %)21|(% style="background-color:#f2f2f2; width:86px" %)PB12|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
181 |(% style="background-color:#f2f2f2; width:44px" %)22|(% style="background-color:#f2f2f2; width:86px" %)PB15|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
182 |(% style="background-color:#f2f2f2; width:44px" %)23|(% style="background-color:#f2f2f2; width:86px" %)PB14|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
183 |(% style="background-color:#f2f2f2; width:44px" %)24|(% style="background-color:#f2f2f2; width:86px" %)PA13|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
184 |(% style="background-color:#f2f2f2; width:44px" %)25|(% style="background-color:#f2f2f2; width:86px" %)PA8|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)Default use to turn on/off LED1 in LSN50 image
185 |(% style="background-color:#f2f2f2; width:44px" %)26|(% style="background-color:#f2f2f2; width:86px" %)GND|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Ground|(% style="background-color:#f2f2f2; width:296px" %)
186 |(% style="background-color:#f2f2f2; width:44px" %)27|(% style="background-color:#f2f2f2; width:86px" %)+5V|(% style="background-color:#f2f2f2; width:84px" %)Out|(% style="background-color:#f2f2f2; width:322px" %)5v output power|(% style="background-color:#f2f2f2; width:296px" %)(((
187 Controlled by PB5(Low to Enable, High to Disable)
188
189 Continuous output : max 600mA
190
191 Pulse output : max 1A
192 )))
193 |(% style="background-color:#f2f2f2; width:44px" %)28|(% style="background-color:#f2f2f2; width:86px" %)LED1|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Controlled by PA8|(% style="background-color:#f2f2f2; width:296px" %)Blink on transmit
194 |(% style="background-color:#f2f2f2; width:44px" %)29|(% style="background-color:#f2f2f2; width:86px" %)BOOT MODE|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Configure device in working mode or ISP program mode|(% style="background-color:#f2f2f2; width:296px" %)(((
195 (((
196 Flash: Normal Working mode and send AT Commands
197 )))
198
199 (((
200 ISP: UART Program Mode
201 )))
202 )))
203 |(% style="background-color:#f2f2f2; width:44px" %)30|(% style="background-color:#f2f2f2; width:86px" %)NRST|(% style="background-color:#f2f2f2; width:84px" %)In|(% style="background-color:#f2f2f2; width:322px" %)Reset MCU|(% style="background-color:#f2f2f2; width:296px" %)
204
205 (% style="display:none" %)
206
207
208
209 === 1.5.1 Jumper JP2 ===
210
211
212 Power on Device when put this jumper.
213
214
215 === 1.5.2 BOOT MODE / SW1 ===
216
217
218 (((
219 ~1. ISP:  upgrade mode, device won't have any signal in this mode. but ready for upgrade firmware. LED won't work. Firmware won't run.
220 )))
221
222 (((
223 2. Flash:  work mode, device starts to work and send out console output for further debug
224 )))
225
226
227 === 1.5.3 Reset Button ===
228
229
230 Press to reboot the device.
231
232
233 === 1.5.4 LED ===
234
235
236 It will flash:
237
238 ~1. When boot the device in flash mode
239
240 2. Send an uplink packet
241
242
243 == 1.6  Hardware Change log ==
244
245
246 (% style="color:red" %)**Note: Hardware version is marked in the PCB.**
247
248
249 (% style="color:#4472c4" %)**LSN50 v2.1:**
250
251 1. Change R14 to 1M ohm
252 1. Change R3, R4 to 4.7Kohm. So no need to modify them for 3 DS18B20 connection.
253 1. Add ESD to each I/O
254
255 (% style="color:#4472c4" %)**LSN50 v2.0:**
256
257 * Change to a new enclosure. Improve with external antenna, IP66, ear hook.
258
259 (% style="color:#4472c4" %)**LSN50 v1.3**:
260
261 * Add P-MOS to control 5V output
262
263 (% style="color:#4472c4" %)**LSN50 v1.2**:
264
265 * Add LED. Turn on for every LoRa transmit
266 * Add pin PA4, PB13, NRST
267 * Add 5V Output, on/off control by PB5(Low to Enable, High to Disable)
268
269 == 1.7  Hole Option ==
270
271
272 The LSN50 provides different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
273
274 [[image:image-20220627104757-1.png]]
275
276
277 [[image:1656298089706-973.png]]
278
279
280 = 2.  Use LSN50 with LoRaWAN firmware =
281
282 == 2.1  How it works ==
283
284
285 (((
286 (((
287 The LSN50 is pre-loaded with a firmware and is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you just need to input the OTAA keys in the LoRaWAN IoT server and power on the LSN50. It will automatically join the network via OTAA.
288 )))
289
290 (((
291
292 )))
293
294 (((
295 The diagram below shows the working flow in default firmware (ver 1.8.0): 
296
297
298 )))
299
300 [[image:image-20220823174408-9.png||height="890" width="657"]]
301
302
303 (((
304 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands>>||anchor="H3.A0UsingtheATCommands"]] to set the keys in the LSN50.
305 )))
306 )))
307
308
309 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
310
311
312 (((
313 Following is an example for how to join the [[TTN V3 LoRaWAN Network>>url:http://www.thethingsnetwork.org/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 
314
315
316 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]][[image:1655891470063-521.png]](% title="Click and drag to resize" %)​[[image:1656298385089-555.png]]
317
318
319 )))
320
321 (% _mstmutation="1" title="Click and drag to resize" %)​(%%)The LG308 is already set to connected to [[TTN V3 network >>url:https://www.thethingsnetwork.org/||_mstmutation="1"]], so what we need to now is configure the TTN V3 server.(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]][[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)​(%%)​
322
323 (((
324
325
326 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSN50.
327
328 Each LSN50 is shipped with a sticker with the default device EUI as below:
329 )))
330
331 (((
332 [[image:image-20230425173445-3.png||height="250" width="538"]]
333 )))
334
335 (% title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]][[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)​(%%)​
336
337 (((
338 (((
339 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
340 )))
341
342 (((
343 **Register the device:**
344 )))
345 )))
346
347 (% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="Click and drag to resize" %)​(% title="Click and drag to resize" %)​(% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](%%)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="Click and drag to resize" %)​(% title="Click and drag to resize" %)​​
348
349 (% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="Click and drag to resize" %)​(% title="Click and drag to resize" %)​[[image:image-20231028092240-1.png]]
350
351
352 **Add APP EUI ,DEV EUI and AppKey:**
353
354
355 [[image:image-20231028092510-2.png||height="568" width="775"]]
356
357
358 (% style="color:blue" %)**Step 2**(%%)**:** Power on LSN50
359
360
361 Put a Jumper on JP2 to power on the device.
362
363 [[image:image-20220627145643-5.png]]
364
365
366 **For LSn50v2:**
367
368 [[image:1656313034748-905.png]]
369
370 (((
371 (((
372 (% style="color:blue" %)**Step 3**(%%)**:**  The LSN50 will auto join to the TTN V3 network. After join success, it will start to upload messages to TTN V3 and you can see the messages in the panel.
373 )))
374 )))
375
376 ​[[image:1656312908855-552.png]]
377
378
379 == 2.3  ​Working Mode & Uplink Payload ==
380
381
382 (((
383 LSN50 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set LSN50 to different working modes.
384 )))
385
386 (((
387 For example:
388 )))
389
390 (((
391 (% _mstmutation="1" style="color:red" %)**AT+MOD=2  **(%%) ~/~/ will set the LSN50 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
392 )))
393
394 (((
395
396 )))
397
398 (((
399 (% style="color:red" %)**NOTE:**
400 )))
401
402 (((
403 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while LSn50 transmit in DR0 with 12 bytes payload.
404
405 2. All modes share the same Payload Explanation from HERE.
406
407 3. By default, the device will send an uplink message every 5 minutes.
408 )))
409
410
411 === 2.3.1  MOD~=1 (Default Mode) ===
412
413
414 (((
415 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
418 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
419 |Value|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20)
420
421 [[image:image-20220627150949-6.png]]
422 )))
423
424
425 === 2.3.2 MOD~=2 (Distance Mode) ===
426
427
428 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
429
430 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
431 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:60px" %)**2**
432 |Value|BAT|(((
433 Temperature(DS18B20)
434 )))|ADC|Digital in & Digital Interrupt|(((
435 Distance measure by:
436 1) LIDAR-Lite V3HP
437 Or
438 2) Ultrasonic Sensor
439 )))|Reserved
440
441 [[image:1656324539647-568.png]]
442
443
444 (% style="color:red" %)**Connection of LIDAR-Lite V3HP:**
445
446 [[image:1656324581381-162.png]]
447
448
449 (% style="color:red" %)**Connection to Ultrasonic Sensor:**
450
451 [[image:1656324598488-204.png]]
452
453 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**1**|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
457 |Value|BAT|(% style="width:102px" %)(((
458 Temperature(DS18B20)
459 )))|(% style="width:145px" %)Digital in & Digital Interrupt|ADC|(((
460 Distance measure by:1)TF-Mini plus LiDAR
461 Or 
462 2) TF-Luna LiDAR
463 )))|Distance signal  strength
464
465 [[image:1656376779088-686.png]]
466
467
468 (% style="color:red" %)**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
469
470 Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
471
472 [[image:1656376795715-436.png]]
473
474
475 (% style="color:red" %)**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
476
477 Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
478
479 [[image:1656376865561-355.png]]
480
481 (((
482 Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
483 )))
484
485
486 === 2.3.3 MOD~=3 (3 ADC + I2C) ===
487
488
489 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
490
491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
493 **Size(bytes)**
494 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)2|=(% style="width: 90px;background-color:#4F81BD;color:white" %)2|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1
495 |(% style="width:97px" %)Value|(% style="width:46px" %)ADC(Pin PA0)|(% style="width:123px" %)ADC2(PA1)|(% style="width:108px" %)ADC3 (PA4)|(% style="width:133px" %)(((
496 Digital in(PA12)&Digital Interrupt1(PB14)
497 )))|(% style="width:151px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:131px" %)Humidity(SHT20 or SHT31)|(% style="width:66px" %)Bat
498
499 [[image:1656377431497-975.png]]
500
501
502 === 2.3.4 MOD~=4 (3 x DS18B20) ===
503
504
505 This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
506
507 Hardware connection is as below,
508
509 (% style="color:red" %)**( Note:**
510
511 * In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
512 * In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
513
514 See [[here>>||anchor="H1.6A0HardwareChangelog" _mstmutation="1"]] for hardware changelog. (% style="color:red" %)**) **
515
516 [[image:1656377461619-156.png]]
517
518
519 This mode has total 11 bytes. As shown below:
520
521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
522 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:60px" %)**2**
523 |Value|BAT|(((
524 Temperature1
525 (DS18B20)
526 (PB3)
527 )))|ADC|Digital in & Digital Interrupt|Temperature2
528 (DS18B20)
529 (PA9)|Temperature3
530 (DS18B20)
531 (PA10)
532
533 [[image:1656377606181-607.png]]
534
535
536 === 2.3.5 MOD~=5(Weight Measurement by HX711) ===
537
538
539 (((
540 This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
541
542
543 )))
544
545 [[image:1656378224664-860.png]]
546
547
548 Each HX711 need to be calibrated before used. User need to do below two steps:
549
550 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
551 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
552 1. (((
553 Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes(Since its maximum number of bytes is 4 bytes with positive and negative
554 So its maximum weight is 2,147,483,647), the unit is g.(Since v1.8.0)
555 )))
556
557 For example:
558
559 (% style="color:#4472c4" %)**AT+WEIGAP =403.0**
560
561 Response:  Weight is 401 g
562
563
564 Check the response of this command and adjust the value to match the real value for thing.
565
566 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:490px" %)
567 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
568 **Size(bytes)**
569 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 130px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)2
570 |(% style="width:97px" %)Value|(% style="width:40px" %)[[Bat>>||anchor="H2.4.1BatteryInfo"]]|(% style="width:110px" %)[[Temperature(DS18B20)>>||anchor="H2.4.2Temperature28DS18B2029"]]|(% style="width:30px" %)[[ADC>>||anchor="H2.4.4AnalogueDigitalConverter28ADC29"]]|(% style="width:120px" %)[[Digital Input and Digitak Interrupt>>||anchor="H2.4.3DigitalInput"]]|(% style="width:40px" %)Weight|(% style="width:40px" %)Reserved
571
572 [[image:image-20220820120036-2.png||height="469" width="1003"]]
573
574
575 === 2.3.6 MOD~=6 (Counting Mode, Since firmware v1.6.5) ===
576
577
578 (((
579 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
580 )))
581
582 (((
583 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
584 )))
585
586
587 [[image:1656378351863-572.png]]
588
589
590 (((
591 (% style="color:red" %)**Note:**(%%) LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
592
593 Power loss or restart will reset the count
594 )))
595
596
597 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
598 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
599 |(% style="width:80px" %)Value|(% style="width:44px" %)[[BAT>>||anchor="H2.4.1BatteryInfo"]]|(% style="width:172px" %)(((
600 [[Temperature(DS18B20)>>||anchor="H2.4.2Temperature28DS18B2029"]]
601 )))|(% style="width:51px" %)[[ADC>>||anchor="H2.4.4AnalogueDigitalConverter28ADC29"]]|(% style="width:206px" %)[[Digital in>>||anchor="H2.4.3DigitalInput"]]|(% style="width:72px" %)Count
602
603 [[image:1656378441509-171.png]]
604
605
606 === 2.3.7  MOD~=7 Three interrupt contact modes (the hardware version needs to support three interrupt versions, Since firmware v1.8.0) ===
607
608
609 [[image:image-20220820140109-3.png]]
610
611
612 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:490px" %)
613 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
614 **Size(bytes)**
615 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 50px;background-color:#4F81BD;color:white" %)2
616 |(% style="width:97px" %)Value|(% style="width:46px" %)BAT|(% style="width:123px" %)Temperature(DS18B20)|(% style="width:108px" %)ADC|(% style="width:133px" %)(((
617 Digital in(PA12)&Digital Interrupt1(PB14)
618 )))|(% style="width:159px" %)Digital Interrupt2(PB15)|(% style="width:159px" %)Digital Interrupt3(PA4)|(% style="width:159px" %)Reserved
619
620 === 2.3.8  MOD~=8 (3ADC+1DS18B20, Since firmware v1.8.0) ===
621
622
623 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
624 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
625 **Size(bytes)**
626 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2
627 |(% style="width:97px" %)Value|(% style="width:46px" %)BAT|(% style="width:123px" %)Temperature(DS18B20)|(% style="width:108px" %)(((
628 ADC1(PA0)
629 )))|(% style="width:133px" %)(((
630 Digital in
631 & Digital Interrupt(PB14)
632 )))|(% style="width:159px" %)(((
633 ADC2(PA1)
634 )))|(% style="width:159px" %)(((
635 ADC3(PA4)
636 )))
637
638 [[image:image-20220823164903-2.png]]
639
640
641 === 2.3.9  MOD~=9 3DS18B20+ two Interrupt count mode (the hardware version needs to support 3 interrupt versions, Since firmware v1.8.0) ===
642
643
644 (% style="color:red" %)**Note:**(%%) Power loss or restart will reset the count
645
646 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
647 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
648 **Size(bytes)**
649 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
650 |(% style="width:97px" %)Value|(% style="width:46px" %)BAT|(% style="width:123px" %)(((
651 Temperature1(PB3)
652 )))|(% style="width:108px" %)(((
653 Temperature2(PA9)
654 )))|(% style="width:133px" %)(((
655 Digital in
656 & Digital Interrupt(PA4)
657 )))|(% style="width:159px" %)(((
658 Temperature3(PA10)
659 )))|(% style="width:159px" %)(((
660 Count1(PB14)
661 )))|(% style="width:159px" %)(((
662 Count2(PB15)
663 )))
664
665 (% class="wikigeneratedid" id="H" %)
666 [[image:image-20220823165322-3.png]]
667
668
669 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
670
671 (% style="color:#4472c4" %)** AT+INTMOD1**(%%) (% style="background-color:yellow" %)** PB14**(%%)  pin:  Corresponding downlink:  (% style="background-color:yellow" %)**06 00 00 xx**
672
673 (% style="color:#4472c4" %)** AT+INTMOD2**(%%)  (% style="background-color:yellow" %)**PB15**(%%) pin:  Corresponding downlink:**  (% style="background-color:yellow" %)06 00 01 xx(%%)**
674
675 (% style="color:#4472c4" %)** AT+INTMOD3** (%%) (% style="background-color:yellow" %)**PA4** (%%) pin:  Corresponding downlink:  ** (% style="background-color:yellow" %)06 00 02 xx(%%)**
676
677
678 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
679
680 When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
681
682 When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
683
684
685 === 2.3.10  ​Decode payload in The Things Network ===
686
687
688 While using TTN V3 network, you can add the payload format to decode the payload.
689
690
691 [[image:1656378466788-734.png]]
692
693
694 (((
695 The payload decoder function for TTN V3 are here:
696 )))
697
698 (((
699 LSN50 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
700 )))
701
702
703 == 2.4 Payload Explanation and Sensor Interface ==
704
705 === 2.4.1 Battery Info ===
706
707
708 (((
709 Check the battery voltage for LSN50.
710 )))
711
712 (((
713 Ex1: 0x0B45 = 2885mV
714 )))
715
716 (((
717 Ex2: 0x0B49 = 2889mV
718 )))
719
720
721 === 2.4.2 Temperature (DS18B20) ===
722
723
724 If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
725
726 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="2.3.4MOD3D4283xDS18B2029"]]
727
728
729 (% style="color:#4472c4" %)**Connection:**
730
731 [[image:1656378573379-646.png]]
732
733
734 (% style="color:#4472c4" %)**Example**:
735
736 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
737
738 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
739
740 (FF3F & 8000 : Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
741
742
743 === 2.4.3 Digital Input ===
744
745
746 The digital input for pin PA12,
747
748 * When PA12 is high, the bit 1 of payload byte 6 is 1.
749 * When PA12 is low, the bit 1 of payload byte 6 is 0.
750
751 === 2.4.4 Analogue Digital Converter (ADC) ===
752
753
754 (((
755 The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from STM32. If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
756
757 Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
758 )))
759
760
761 (((
762 The ADC monitors the voltage on the PA0 line, in mV.
763 )))
764
765 (((
766 Ex: 0x021F = 543mv,
767 )))
768
769
770 (((
771 (% style="color:#4472c4" %)** Example1:** (%%) Reading an Oil Sensor (Read a resistance value):
772
773
774 )))
775
776 [[image:image-20220627172409-28.png]]
777
778
779 In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
780
781
782 (% style="color:blue" %)**Steps:**
783
784 1. Solder a 10K resistor between PA0 and VCC.
785 1. Screw oil sensor's two pins to PA0 and PB4.
786
787 The equipment circuit is as below:
788
789
790 [[image:image-20220627172500-29.png]]
791
792
793 According to above diagram:
794
795 [[image:image-20220628091043-4.png]]
796
797 So
798
799 [[image:image-20220628091344-6.png]]
800
801
802 [[image:image-20220628091621-8.png]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
803
804
805 The [[image:image-20220628091702-9.png]] 4.5K ohm
806
807 Since the Bouy is linear resistance from 10 ~~ 70cm.
808
809
810 The position of Bouy is [[image:image-20220628091824-10.png]] , from the bottom of Bouy.
811
812
813 === 2.4.5 Digital Interrupt ===
814
815
816 Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the LSN50 will send a packet to the server.
817
818
819 (((
820 (% style="color:#4472c4" %)** Interrupt connection method:**
821 )))
822
823 [[image:1656379178634-321.png]]
824
825
826 (((
827 (% style="color:#4472c4" %)**Example to use with door sensor : (Requires firmware > 1.5.1)**
828 )))
829
830
831 (((
832 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
833 )))
834
835 [[image:1656379210849-860.png]]
836
837
838 (((
839 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
840 )))
841
842
843 (((
844 (% style="color:#4472c4" %)** Below is the installation example:**
845 )))
846
847 (((
848 Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
849 )))
850
851 * (((
852 One pin to LSN50's PB14 pin
853 )))
854 * (((
855 The other pin to LSN50's VCC pin
856 )))
857
858 (((
859 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
860 )))
861
862
863 (((
864 Door sensors have two types: ** (% style="color:#4472c4" %)NC (Normal close)(%%)** and (% style="color:#4472c4" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
865 )))
866
867 (((
868 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
869 )))
870
871 [[image:1656379283019-229.png]]
872
873
874 (((
875 The above photos shows the two parts of the magnetic switch fitted to a door.
876 )))
877
878 (((
879 (((
880 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
881 )))
882 )))
883
884
885 (((
886 The command is:
887 )))
888
889 (((
890 (% _mstmutation="1" style="color:blue" %)**AT+INTMOD=1 **(% _mstmutation="1" %)** **(%%)~/~/(more info about INMOD please refer(% _mstmutation="1" %)** **(%%)[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf||_mstmutation="1"]](% _mstmutation="1" %)**. **(%%))
891 )))
892
893
894 (((
895 Below shows some screen captures in TTN V3:
896 )))
897
898 [[image:1656379339508-835.png]]
899
900
901 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
902
903 (% style="background-color:#dcdcdc" %)door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
904
905
906 (% style="color:red" %)**Notice for hardware version LSN50 v1 < v1.3**(%%) (produced before 2018-Nov).
907
908 In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
909
910 [[image:1656379563303-771.png]]
911
912
913 === 2.4.6 I2C Interface (SHT20) ===
914
915
916 (((
917 The PB6(SCL) and PB7(SDA) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
918 )))
919
920 (((
921 We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with (% style="color:#4472c4" %)**AT+MOD=1 (default value).**
922
923 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.**
924 )))
925
926 (((
927 Below is the connection to SHT20/ SHT31. The connection is as below:
928 )))
929
930
931 [[image:image-20220902163605-2.png]]
932
933
934 The device will be able to get the I2C sensor data now and upload to IoT Server.
935
936 [[image:1656379664142-345.png]]
937
938 Convert the read byte to decimal and divide it by ten.
939
940
941 (% style="color:blue" %)**Example:**
942
943 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
944
945 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
946
947
948 If you want to use other I2C device, please refer the SHT20 part source code as reference.
949
950
951 === 2.4.7 ​Distance Reading ===
952
953
954 Refer [[Ultrasonic Sensor section>>||anchor="H2.4.8UltrasonicSensor"]].
955
956
957 === 2.4.8 Ultrasonic Sensor ===
958
959
960 (((
961 The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
962 )))
963
964
965 (((
966 The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
967 )))
968
969
970 (((
971 The picture below shows the connection:
972 )))
973
974 [[image:1656380061365-178.png]]
975
976 Connect to the LSN50 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
977
978 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
979
980
981 (% style="color:blue" %)**Example:**
982
983 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
984
985 [[image:1656384895430-327.png]]
986
987
988 [[image:1656384913616-455.png]]
989
990
991 You can see the serial output in ULT mode as below:
992
993 [[image:1656384939855-223.png]]
994
995
996 **In TTN V3 server:**
997
998 [[image:1656384961830-307.png]]
999
1000
1001 [[image:1656384973646-598.png]]
1002
1003
1004 === 2.4.9  Battery Output - VDD pin ===
1005
1006
1007 The VDD pin of LSN50v2 is connected to the Battery directly. If users want to use VDD pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the VDD pin is always open. If the external sensor is of high power consumption. the battery of LSN50v2 will run out very soon.
1008
1009
1010 === 2.4.10  +5V Output ===
1011
1012
1013 Since v1.2 hardware version, a +5v output is added in the hardware. The +5V output will be valid for every sampling.  LSN50 will enable +5V output before all sampling and disable the +5v after all sampling. 
1014
1015
1016 (((
1017 Since firmware (% style="color:red" %)**v1.6.3**(%%), The 5V output time can be controlled by AT Command.
1018 )))
1019
1020 (((
1021 (% style="color:#4472c4" %)**AT+5VT=1000**
1022 )))
1023
1024 (((
1025 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
1026 )))
1027
1028
1029 (((
1030 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1031 )))
1032
1033
1034 === 2.4.11  Weigh Sensor HX711 ===
1035
1036
1037 Since v1.6.2 firmware, LSN50 support Weigh Sensor HX711.
1038
1039
1040 === 2.4.12  BH1750 Illumination Sensor ===
1041
1042
1043 Since v1.7.0 firmware, MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
1044
1045 [[image:image-20220628110012-11.jpeg]]
1046
1047
1048 [[image:image-20220628110012-12.png]]
1049
1050
1051 === 2.4.13  Working MOD ===
1052
1053
1054 (((
1055 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1056 )))
1057
1058 (((
1059 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1060 )))
1061
1062 (((
1063 Case 7^^th^^ Byte >> 2 & 0x1f:
1064 )))
1065
1066 * 0: MOD1
1067 * 1: MOD2
1068 * 2: MOD3
1069 * 3: MOD4
1070 * 4: MOD5
1071 * 5: MOD6
1072
1073 == 2.5 Configure LSN50 via AT or Downlink ==
1074
1075
1076 (((
1077 User can configure LSN50 via [[AT Commands >>||anchor="H3.A0UsingtheATCommands"]]or LoRaWAN Downlink Commands
1078 )))
1079
1080 (((
1081 There are two kinds of Commands:
1082 )))
1083
1084 * (% _mstmutation="1" style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.7.0, user can find what common commands it supports:  [[End Device AT Commands>>doc:Main.End Device AT Commands and Downlink Command.WebHome||_mstmutation="1"]]
1085
1086 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LSN50.  User can see these commands below:
1087
1088 === 2.5.1 Common Commands: ===
1089
1090
1091 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.7.0, user can find what common commands it supports: [[End Device AT Commands>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1092
1093
1094 === 2.5.2 Sensor related commands: ===
1095
1096
1097 (% style="color:blue" %)**Set work mode:**
1098
1099 * (% style="color:#037691" %)**AT Command:**
1100
1101 (((
1102 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+MOD=2 **(%%) ~/~/ Set work MOD =2. (1: IIC mode, 2: Distance mode, 3: 3ADC mode, 4: 3DS18B20 mode, 5: weight mode)
1103 )))
1104
1105 (((
1106 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+MOD=?** (%%) ~/~/  Get current work MOD
1107 )))
1108
1109
1110 * (% style="color:#037691" %)**Downlink Payload:**
1111
1112 (% style="background-color:#dcdcdc" %)**0x0A aa** (%%) ~/~/ Same as AT+MOD=aa
1113
1114
1115
1116 (% style="color:blue" %)**Set the trigger interrupt mode:**
1117
1118 * (% style="color:#037691" %)**AT Command:**
1119
1120 (((
1121 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+INTMOD=2**  (%%) ~/~/ Set INTMOD =2. (0: Disable, 1:falling or rising, 2: falling, 3: rising)
1122 )))
1123
1124 (((
1125 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+INTMOD=?**  (%%) ~/~/  Get current INTMOD
1126 )))
1127
1128
1129 * (% style="color:#037691" %)**Downlink Payload:**
1130
1131 (% style="background-color:#dcdcdc" %)**0x06 000003**      (%%) ~/~/ Set AT+INTMOD=3
1132
1133
1134
1135 (% style="color:blue" %)**Set the 5V power open time during sampling:**
1136
1137 * (% style="color:#037691" %)**AT Command:**
1138
1139 (((
1140 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+5VT=1000** (%%) ~/~/ Set 5v open time to 1000ms
1141 )))
1142
1143 (((
1144 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+5VT=?**    (%%) ~/~/  Check current 5v open duration
1145 )))
1146
1147
1148 * (% style="color:#037691" %)**Downlink Payload:**
1149
1150 (% style="background-color:#dcdcdc" %)**0x07 aa bb**    (%%) ~/~/ Equal AT+5VT=0x(aa bb)
1151
1152
1153
1154 (% style="color:blue" %)**Set the weight to 0g (Zero Calibration):**
1155
1156 * (% style="color:#037691" %)**AT Command:**
1157
1158 (% style="background-color:#dcdcdc" %)**AT+WEIGRE** ** **(%%)** **~/~/ Set the weight to 0g
1159
1160
1161 * (% style="color:#037691" %)**Downlink Payload:**
1162
1163 (% style="background-color:#dcdcdc" %)**0x08 01** (%%) ~/~/ Set the weight to 0g
1164
1165
1166
1167 (% style="color:blue" %)**Get or Set the GAP Value (calibrate factor) of measurement:**
1168
1169 * (% style="color:#037691" %)**AT Command:**
1170
1171 (((
1172 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+WEIGAP=403.0**  (%%) ~/~/ Set GAP Value =403.0 (response: Weight: xx g)
1173 )))
1174
1175 (((
1176 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+WEIGAP=?**  (%%) ~/~/  Get current GAP Value
1177 )))
1178
1179
1180 * (% style="color:#037691" %)**Downlink Payload:**
1181
1182 (% style="background-color:#dcdcdc" %)**0x08 02 aa bb** (%%) ~/~/ Equal to AT+WEIGAP=0x(aa bb)/10
1183
1184
1185
1186 (% style="color:blue" %)**Encrypt upload:**
1187
1188 * (% style="color:#037691" %)**AT Command:**
1189
1190 (((
1191 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DECRYPT=1**  (%%) ~/~/ The payload is uploaded without encryption
1192 )))
1193
1194 (((
1195 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DECRYPT=0**  (%%) ~/~/  Encrypt when uploading payload (default)
1196 )))
1197
1198
1199
1200 (% style="color:blue" %)**Get data:**
1201
1202 * (% style="color:#037691" %)**AT Command:**
1203
1204 (((
1205 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+GETSENSORVALUE=0** (%%) ~/~/ The serial port gets the reading of the current sensor
1206 )))
1207
1208 (((
1209 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+GETSENSORVALUE=1** (%%) ~/~/  The serial port gets the current sensor reading and uploads it.
1210
1211
1212
1213 (% style="color:blue" %)**Resets the downlink packet count:**
1214
1215 * (% style="color:#037691" %)**AT Command:**
1216
1217 (((
1218 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISFCNTCHECK=0**(% _mstmutation="1" %)**     **(%%) ~/~/(% _mstmutation="1" %)** **(%%)When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1219 )))
1220
1221 (((
1222 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISFCNTCHECK=1** (%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count
1223 )))
1224
1225
1226
1227 (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches:**
1228
1229 * (% style="color:#037691" %)**AT Command:**
1230
1231 (((
1232 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISMACANS=0**(%%)  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1233 )))
1234
1235 (((
1236 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISMACANS=1** (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1237 )))
1238
1239 * (% style="color:#037691" %)**Downlink Payload:**
1240
1241 (% class="wikigeneratedid" %)
1242 (% style="background-color:#dcdcdc" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1243
1244
1245
1246 (% style="color:blue" %)**Copy downlink to uplink:**
1247
1248 * (% style="color:#037691" %)**AT Command:**
1249
1250 (((
1251 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+RPL=5**(%%)  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1252 )))
1253
1254 (% class="wikigeneratedid" %)
1255 Example: (% style="background-color:#dcdcdc" %)**aa xx xx xx xx** (%%) ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1256
1257
1258 (% class="wikigeneratedid" %)
1259 [[image:image-20220823173747-6.png||height="165" width="1124"]]
1260
1261 **For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.**
1262
1263
1264
1265 [[image:image-20220823173833-7.png||height="149" width="1124"]]
1266
1267 **For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.**
1268
1269
1270
1271 (% style="color:blue" %)**Query version number and frequency band 、TDC:**
1272
1273 * (((
1274 (% style="color:#037691" %)**Downlink: 26 01  **(%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1275 )))
1276
1277 **Example:**
1278
1279
1280 [[image:image-20220823173929-8.png||height="76" width="1205"]]
1281
1282
1283
1284 (% style="color:blue" %)**Add rejoin feature if device offline:**
1285
1286 * (% style="color:#037691" %)**AT Command:**
1287
1288 **AT+DDETECT=<Flag>,<ACK_Timout_1>,<ACK_Timout_2>    (Default Value: AT+DDETECT=1,1440,2880)**
1289
1290 (% style="color:red" %)**Flag:** (%%) 1 Enable online detect, 0: Disable online detect
1291
1292 (% style="color:red" %)**ACK_Timout_1:**(%%) Unit: min
1293
1294 (% style="color:red" %)**ACK_Timout_2:**(%%) Unit: min
1295
1296
1297 **Example: AT+DDETECT=1,1440,2880**
1298
1299 Enable Online Detect, if end node doesn't receive any downlink within ACK_Timout_1( 1440 minutes or 24 hours). End node will use confirmed uplink to send packets during ACK_Timout_1 (the 24th hour) to ACK_Timout_2 ( the 48th hour).
1300
1301 If from the 24th to 48th hour, end node got an downlink from server, it will switch back to unconfirmed uplink. end node will restart ACK_Timout_1.
1302
1303 If from the 24th to 48th hour, end node still not got any downlink, means device doesn't get ACK in 48 hours. Device will process rejoin, rejoin request interval is AT+RJTDC period. For AU915/ US915, device will use the sub-band used for last join.
1304
1305
1306 * (((
1307 (% style="color:#037691" %)**Downlink: 0x32 01 05A0 0B40 **
1308
1309 0x01 : Flag
1310
1311 0x05A0: ACK_Timout_1
1312
1313 0x0B40: ACK_Timout_2
1314
1315
1316
1317 )))
1318
1319 (% class="wikigeneratedid" %)
1320 (% style="color:blue" %)**Add new feature to control NBTrans for unconfirmed uplink mode:**
1321
1322 * (% style="color:#037691" %)**AT Command:**
1323
1324 (% style="background-color:#dcdcdc" %)** AT+SETMAXNBTRANS=value1,value2   **(%%)** **~/~/ NBTrans specified how many re-transmission for each packet. If LoRaWAN LinkADR from server set NBTrans to high value. The battery will consume fast.
1325
1326 **AT+SETMAXNBTRANS=value1,value2 Default Value: AT+SETMAXNBTRANS=1,0**
1327
1328 (% style="color:red" %)**value1:** (%%) Set max NBTrans. For example, if value1(NBTrans)=1, end node set NBTrans max to 1 , even downlink LinkADR request end node to set NBTrans to higher value such as 6.
1329
1330 (% style="color:red" %)**value2:** (%%) 0: uplink fcnt doesn't change for each NBTrans;  1: uplink fcnt increase by 1 for each NBTrans.
1331
1332 set value2 to 1 for Chirpstack server, because Chirpstack will ignore same FCNT in re-transmission.
1333
1334
1335 **Example: AT+SETMAXNBTRANS=2,1**
1336
1337 Set max NBTrans to 2, fcnt will increase +1 for each NBTrans
1338
1339
1340 * (((
1341 (% style="color:#037691" %)**Downlink: 0x33 02 01**
1342
1343 value1=0x02
1344 )))
1345
1346 (% class="wikigeneratedid" %)
1347 value2=0x01
1348
1349
1350 == 2.6 Show Data in Datacake IoT Server ==
1351
1352
1353 (((
1354 Datacake provides a human friendly interface to show the sensor data, once we have data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
1355 )))
1356
1357 (((
1358 (% style="color:blue" %)**Step 1**(%%)**:** Be sure that your device is programmed and properly connected to the network at this time.
1359 )))
1360
1361 (((
1362 (% style="color:blue" %)**Step 2**(%%)**:** To configure the Application to forward data to Datacake you will need to add integration. To add the Datacake integration, perform the following steps:
1363 )))
1364
1365 [[image:1656385623971-339.png]]
1366
1367
1368 [[image:1656385646347-395.png]]
1369
1370
1371 [[image:1656385662459-942.png]]
1372
1373
1374 (% style="color:blue" %)**Step 3**(%%)**: **Create an account or log in Datacake.
1375
1376 (% style="color:blue" %)**Step 4**(%%)**:** Search the LSN50 and add DevEUI.
1377
1378 [[image:1656385688973-317.png]]
1379
1380
1381 == 2.7 ​Firmware Change Log ==
1382
1383
1384 (((
1385 **Firmware download: ** [[https:~~/~~/www.dropbox.com/sh/9k0a6sn8a94dc03/AAD54woDmnmAMUMY2WfKfjxoa?dl=0>>https://www.dropbox.com/sh/9k0a6sn8a94dc03/AAD54woDmnmAMUMY2WfKfjxoa?dl=0]]
1386 )))
1387
1388 (((
1389 **Firmware Change Log: **[[https:~~/~~/www.dropbox.com/sh/9k0a6sn8a94dc03/AAD54woDmnmAMUMY2WfKfjxoa?dl=0>>https://www.dropbox.com/sh/9k0a6sn8a94dc03/AAD54woDmnmAMUMY2WfKfjxoa?dl=0]]
1390
1391
1392 )))
1393
1394 == 2.8 Use VDD or +5V to Power External Sensor ==
1395
1396
1397 (((
1398 User can use VDD or +5V to power external sensor.
1399 )))
1400
1401 (((
1402 (% style="color:red" %)**Note:**
1403 )))
1404
1405 1. (((
1406 VDD is 2.5~~3.3v from the battery + diode, the VDD is always on, so when use VDD to power external sensor, make sure the sensor has a low power consumption in sleep mode ( less 50 uA) to get a long battery life.
1407 )))
1408 1. (((
1409 +5V output is only ON when sampling. And MCU will turn off it after sampling. So if sensor can support 5v, +5V out is the best choice. [[See here for more info>>||anchor="H2.4.10A02B5VOutput"]].
1410 )))
1411
1412 (((
1413 (% style="color:red" %)**Note: Always test the actually current pass by the JP2 jumper when connect to a new type of sensor.**
1414 )))
1415
1416
1417 == 2.9  Battery & Power Consumption ==
1418
1419
1420 LSN50v2 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1421
1422 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1423
1424
1425 = 3.  Using the AT Commands =
1426
1427 == 3.1  Access AT Commands ==
1428
1429
1430 LSN50 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSN50 for using AT command, as below.
1431
1432
1433 (% style="color:#4472c4" %)**LSN50 v1 UART connection photo**
1434
1435 [[image:image-20220627165424-24.png||height="495" width="486"]]
1436
1437
1438 (% style="color:#4472c4" %)**LSN50 v2 UART connection photo**
1439
1440 [[image:image-20220627165424-25.png||height="437" width="894"]]
1441
1442
1443 (((
1444 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSN50. LSN50 will output system info once power on as below:
1445 )))
1446
1447 [[image:image-20220627165531-26.png||height="624" width="893"]](% style="display:none" %)
1448
1449
1450 == 3.2  Common AT Command Sequence ==
1451
1452 === 3.2.1  Multi-channel ABP mode (Use with SX1301/LG308) ===
1453
1454
1455 (((
1456 (% style="color:#037691" %)**If device has not joined network via OTAA:**
1457 )))
1458
1459 (((
1460 (% style="background-color:#dcdcdc" %)**AT+FDR**
1461 )))
1462
1463 (((
1464 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1465 )))
1466
1467 (((
1468 (% style="background-color:#dcdcdc" %)**ATZ**
1469 )))
1470
1471
1472 (((
1473 (% style="color:#037691" %)**If device already joined network:**
1474 )))
1475
1476 (((
1477 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1478 )))
1479
1480 (((
1481 (% style="background-color:#dcdcdc" %)**ATZ**
1482 )))
1483
1484
1485 === 3.2.2  Single-channel ABP mode (Use with LG01/LG02) ===
1486
1487
1488 See [[Sect 6.7>>||anchor="H6.7A0HowtoconfiguretheEUIkeysinLSN503F"]]
1489
1490
1491 = 4.  Upload Firmware =
1492
1493
1494 (% style="color:red" %)**Notes**:
1495
1496 * Since image v1.3, the firmware will show version info during boot. If your device doesn't show version info, you may have a very old image version.
1497 * Always run AT+FDR to reset parameters to factory default after an update image.
1498 If the update is from image >= v1.3 to another image version >=v1.3, then the keys will be kept after running AT+FDR.
1499 Otherwise (e.g. from v1.2 to v1.3), AT+FDR may erase the keys.
1500
1501 == 4.1  Upload Firmware via Serial Port ==
1502
1503
1504 The LSN50's AT Command port can be used for firmware upgrade. The hardware connection for upgrade firmware is as below:
1505
1506 [[image:image-20220627163506-18.png||height="426" width="418"]]
1507
1508
1509 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1510
1511 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LSN50 Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADnMzn1IN0LssOQNHlvooTta/LSN50%20%26%20LSN50-v2/Firmware/LSN50.hex?dl=0&subfolder_nav_tracking=1]].
1512
1513 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update
1514
1515 [[image:image-20220627163821-19.png]]
1516
1517
1518 [[image:image-20220627163930-20.png||height="450" width="751"]]
1519
1520
1521 [[image:image-20220627164030-21.png||height="459" width="750"]]
1522
1523
1524 (((
1525 (% style="color:blue" %)**Step4**(%%)**: **Switch SW1 back to flash state and push the RESET button.
1526 )))
1527
1528 (((
1529 The LSN50 will then run the new firmware.
1530 )))
1531
1532
1533 == 4.2  Upload Firmware via ST-Link V2 ==
1534
1535
1536 You can use ST-LINK to upgrade firmware into LSN50. The hardware connection for upgrade firmware is as below:
1537
1538 [[image:1656319349131-664.png]]
1539
1540
1541 (% style="color:blue" %)**Connection:**
1542
1543 * (% style="background-color:yellow" %)**ST-LINK v2 GND  <~-~-> LSN50 GND**
1544 * (% style="background-color:yellow" %)**ST-LINK v2 SWCLK <~-~-> LSN50 PA14**
1545 * (% style="background-color:yellow" %)**ST-LINK v2 SWDIO <~-~-> LSN50 PA13**
1546 * (% style="background-color:yellow" %)**ST-LINK v2 RST  <~-~->  LSN50 NRST**
1547
1548 (% style="color:blue" %)**Step1:**(%%) Install [[ST-LINK driver>>url:https://www.stmicroelectronics.com.cn/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-utilities/stsw-link009.html]] first and then install [[ST-LINK Utility>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stsw-link004.html]]
1549
1550 (% style="color:blue" %)**Step2**(%%): Download the [[LSN50 Image files>>url:https://github.com/dragino/LoRa_STM32/tree/master/LSN50.hex]].
1551
1552 (% style="color:blue" %)**Step3:**(%%)** **Open ST-LINK utility, (% style="color:blue" %)**file ~-~-> open file**(%%) to select the image to be upgraded.
1553
1554 (% style="color:blue" %)**Step4:**(%%)** **Click the “(% style="color:blue" %)**Program Verify**”(%%) button on ST-LINK.
1555
1556 [[image:image-20220627164303-22.png]]
1557
1558
1559 (((
1560 (% style="color:blue" %)**Step5:**(%%)** **The led on the ST-LINK adapter will now blinking, and the ST-Link utility will pop up a download window. Click the start button to download the image to LSN50.
1561 )))
1562
1563 (((
1564 (% style="color:red" %)**NOTE: If this step fails, ST-LINK can't establish connection to LSN50, please try to swap SWDIO & SWCLK pin. Some ST-LINK v2 devices are incorrectly marked.**
1565 )))
1566
1567
1568 [[image:image-20220627164303-23.png]]
1569
1570
1571 = 5.  Developer Guide =
1572
1573
1574 * (((
1575 Software Source Code Download : [[https:~~/~~/github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN>>https://github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN]]
1576 )))
1577 * (((
1578 Hardware Source Code Download: [[https:~~/~~/github.com/dragino/Lora/tree/master/LSN50>>https://github.com/dragino/Lora/tree/master/LSN50]]
1579 )))
1580
1581 (((
1582 LSN50 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1583 )))
1584
1585 * (((
1586 Software Source Code: [[https:~~/~~/github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN>>url:https://github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN||_mstmutation="1"]]
1587 )))
1588 * (((
1589 Hardware Design files:  [[https:~~/~~/github.com/dragino/Lora/tree/master/LSN50>>url:https://github.com/dragino/Lora/tree/master/LSN50]]
1590 )))
1591 * (((
1592 Compile instruction:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Compile%20Instruction%20~~-~~-%20STM32/>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Compile%20Instruction%20--%20STM32/]]
1593 )))
1594
1595 (((
1596 Use Keil to open project file:
1597 )))
1598
1599 (((
1600 STM32CubeExpansion_LRWAN/Projects/Multi/Applications/LoRa/DRAGINO-LRWAN(AT)/MDK-ARM/STM32L072CZ-Nucleo/Lora.uvprojx
1601 )))
1602
1603 (((
1604
1605 )))
1606
1607 (((
1608 In Keil, you can see what frequency band the code support.
1609 )))
1610
1611 [[image:image-20220627162417-15.png]]
1612
1613
1614 **~1. If you want to change frequency, modify the Preprocessor Symbols.**
1615
1616
1617 For example, change EU868 to US915
1618
1619 [[image:1656318662202-530.png]]
1620
1621
1622 **2. Compile and build**
1623
1624 [[image:image-20220627163212-17.png]]
1625
1626
1627 = 6.  FAQ =
1628
1629 == 6.1  Why there is 433/868/915 version? ==
1630
1631
1632 (((
1633 Different countries have different rules for the ISM band for LoRa. Although the LoRa chip can support a wide range of Frequencies, we provide different versions of the hardware for best tune of the LoRa hardware part.
1634 )))
1635
1636
1637 == 6.2 What is the frequency range of LT LoRa part? ==
1638
1639
1640 Different LT version supports different frequency range, below is the table for the working frequency and recommend bands for each model:
1641
1642 [[image:image-20220627155456-9.png]]
1643
1644
1645 == 6.3  How to change the LoRa Frequency Bands/Region? ==
1646
1647
1648 You can follow the instructions for [[how to upgrade image>>||anchor="H2.7200BFirmwareChangeLog"]].
1649 When downloading the images, choose the required image file for download.
1650
1651
1652 == 6.4  Can I use Private LoRa protocol? ==
1653
1654
1655 (((
1656 (((
1657 The stock firmware is based on LoRaWAN protocol. You can use a private LoRa protocol in LSN50. This section describes an example for base LoRa transfer. It is a reference/demo and we do not provide further software development support on this topic.
1658 )))
1659
1660 (((
1661 In this demo, we will show the communication between LoRa Shield and LSN50, both of them using the basic LoRa library. LSN50 will send a message to a LoRa Shield and the LoRa Shield will print it to the console.
1662 )))
1663
1664
1665 )))
1666
1667 (% style="color:#4472c4" %)**LoRa Shield + UNO**:
1668
1669 Use the [[LoRa Library>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/LoRa_Raw_Example/Arduino/&file=LoRa.zip]] and upload the [[LoRa Receive>>http://www.dragino.com/downloads/downloads/LSN50-LoRaST/LoRa_Raw_Example/Arduino/LoRaReceiver.ino]] Sketch to Arduino.
1670
1671
1672 Refs:  [[https:~~/~~/www.dropbox.com/sh/u9s41qdx5yujwcb/AAAT5r4QkMaeOogWrzJt7Wn4a?dl=0>>https://www.dropbox.com/sh/u9s41qdx5yujwcb/AAAT5r4QkMaeOogWrzJt7Wn4a?dl=0]]
1673
1674
1675 Open the serial monitor to Arduino. The device acts as a LoRa Receiver and listen on the frequency 868.3Mhz by default.
1676
1677
1678 (% style="color:#4472c4" %)**LSN50**:
1679
1680 Use the <[[LoRa RAW code>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/LoRa_Raw_Example/LSN50/&file=lora_send.zip]]> . The project file is in: MDK-ARM\STM32L072CZ-Nucleo\ Lora.uvprojx
1681
1682 Compile it and Upload it to LSN50, the LSN50 will transfer on the frequency 868.3Mhz.
1683
1684 In the Arduino Console, it will see the received packets as below.
1685
1686
1687 [[image:image-20220627160116-10.png]]
1688
1689
1690 == 6.5  How to set up LSN50 to work in 8 channel mode ==
1691
1692
1693 (((
1694 By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1695 )))
1696
1697 (((
1698 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1699 )))
1700
1701 (((
1702
1703 )))
1704
1705 (((
1706 For example, in (% style="color:blue" %)**US915**(%%) band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1707 )))
1708
1709 [[image:image-20220627160940-13.png]]
1710
1711
1712 (((
1713 When you use the TTN V3 network, the US915 frequency bands use are:
1714 )))
1715
1716 * (((
1717 903.9 - SF7BW125 to SF10BW125
1718 )))
1719 * (((
1720 904.1 - SF7BW125 to SF10BW125
1721 )))
1722 * (((
1723 904.3 - SF7BW125 to SF10BW125
1724 )))
1725 * (((
1726 904.5 - SF7BW125 to SF10BW125
1727 )))
1728 * (((
1729 904.7 - SF7BW125 to SF10BW125
1730 )))
1731 * (((
1732 904.9 - SF7BW125 to SF10BW125
1733 )))
1734 * (((
1735 905.1 - SF7BW125 to SF10BW125
1736 )))
1737 * (((
1738 905.3 - SF7BW125 to SF10BW125
1739 )))
1740 * (((
1741 904.6 - SF8BW500
1742 )))
1743
1744 (((
1745 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN V3 network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1746 )))
1747
1748 (((
1749 (% style="color:blue" %)**AT+CHE=2**
1750 )))
1751
1752 (((
1753 (% style="color:blue" %)**ATZ**
1754 )))
1755
1756
1757 (((
1758 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1759 )))
1760
1761 (((
1762 The (% style="color:blue" %)**AU915**(%%) band is similar. Below are the AU915 Uplink Channels.
1763 )))
1764
1765 [[image:image-20220627161124-14.png]]
1766
1767
1768 == 6.6  How to set up LSN50 to work with Single Channel Gateway such as LG01/LG02? ==
1769
1770
1771 (((
1772 In this case, users need to set LSN50 to work in ABP mode and transmit in only one frequency.
1773 )))
1774
1775 (((
1776 Assume we have a LG02 working in the frequency 868400000 now, below is the steps.
1777 )))
1778
1779
1780 (((
1781 (% style="color:blue" %)**Step1: **(%%)Log in TTN V3, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1782 )))
1783
1784
1785 [[image:image-20220627160542-11.png]]
1786
1787
1788 (((
1789 (% style="color:red" %)**Note: You need to make sure the above three keys match in the device and in TTN V3. You can change them either in TTN V3 or in the Device to make them match. In TTN V3, NETSKEY and APPSKEY can be configured in the setting page, but the Device Addr is generated by TTN V3.**
1790 )))
1791
1792
1793 (((
1794 (% style="color:red" %)**You can also change the Device ADDR in TTN V3 by using the [[The Things Network CLI>>url:https://www.thethingsnetwork.org/docs/network/cli/quick-start.html]].**
1795 )))
1796
1797
1798 (((
1799 (% style="color:blue" %)**Step2:  **(%%)Run AT commands to make the LSN50 work in Single frequency and ABP mode. Below are the AT commands:
1800 )))
1801
1802
1803 (((
1804 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  :  Reset Parameters to Factory Default, Keys Reserve
1805 )))
1806
1807 (((
1808 (% style="background-color:#dcdcdc" %)AT+NJM=0(%%) : Set to ABP mode
1809 )))
1810
1811 (((
1812 (% style="background-color:#dcdcdc" %)AT+ADR=0(%%) : Set the Adaptive Data Rate Off
1813 )))
1814
1815 (((
1816 (% style="background-color:#dcdcdc" %)AT+DR=5(%%)  : Set Data Rate (Set AT+DR=3 for 915 band)
1817 )))
1818
1819 (((
1820 (% style="background-color:#dcdcdc" %)AT+TDC=300000(%%)  :  Set transmit interval to 5 minutes
1821 )))
1822
1823 (((
1824 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%) : Set transmit frequency to 868.4Mhz
1825 )))
1826
1827 (((
1828 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  :Set Device Address to 26 01 1A F1
1829 )))
1830
1831 (((
1832 (% style="background-color:#dcdcdc" %)ATZ(%%)  :  Reset MCU
1833 )))
1834
1835
1836 (((
1837 As shown  below:
1838 )))
1839
1840 [[image:image-20220627160542-12.png]]
1841
1842
1843 == 6.7  How to configure the EUI keys in LSN50? ==
1844
1845
1846 (((
1847 The early version of LSN50 firmware doesn't have pre-configured keys.
1848 It is recommended that you update the image to the latest version before configure the keys. Refer [[upgrade_image>>||anchor="H2.7200BFirmwareChangeLog"]] to update the firmware to the latest version.
1849
1850 Run AT commands to set the keys to desired keys; refer [[AT Command manual>>https://www.dragino.com/downloads/downloads/LSN50-LoRaST/DRAGINO_LSN50_AT_Commands_v1.6.3.pdf]].
1851
1852
1853 (((
1854
1855 )))
1856
1857 == 6.8 Why can't users switch working modes? ==
1858
1859 LSN50v2 and LSNS0v2-S31B use different firmware. If the user purchased LSN50V2-S31B, the working mode cannot be switched according to this manual.
1860
1861 LSN50v2 and LSN50V2-S31b use the same motherboard, users can refer to the following burning instructions to change the LSN50V2-S31B firmware to LSN50v2.
1862
1863 [[Firmware Upgrade Instruction for STM32 base products - DRAGINO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.1.2LSN50v22FLSN50v2-D222FLSN50v2-D232FLSN50v2-S31B]]
1864
1865
1866
1867 )))
1868
1869 = 7.  Trouble Shooting =
1870
1871 == 7.1  Connection problem when uploading firmware. ==
1872
1873
1874 (((
1875 (% style="color:red" %)**Issue**(%%): While using USB to TTL to upload firmware via UART interface. It works for several times but most of times it fails.
1876 )))
1877
1878 (((
1879
1880 )))
1881
1882 (((
1883 (% style="color:green" %)**Checklist**:
1884 )))
1885
1886 (((
1887 ~1. Double check if follow up exactly the steps as manual.
1888 )))
1889
1890 (((
1891 2. Check if hardware works fine: a) check if AT command works, b) check if ISP / flash switch works: PA12 will have different output level while set the ISP/Flash Switch in different position. c) check if reset button works.
1892 )))
1893
1894 (((
1895 3. If you use Windows10 system. Please change the flash loader to run in Windows7 compatibility mode.
1896 )))
1897
1898 [[image:image-20220627153421-8.png]]
1899
1900
1901 (((
1902 4. We have seen cases where the FT232 USB TTL adapter has a reliability issue with the PC USB chipset (Intel). In this case, even though points 1 and 2 above work, it still has a reliability issue for uploading. If this happens, change to a different PC or change the USB to TTL adapter to solve the issue.
1903 )))
1904
1905
1906 == 7.2  Why I can't join TTN V3 in US915 / AU915 bands? ==
1907
1908
1909 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1910
1911
1912 == 7.3  AT Command input doesn't work ==
1913
1914
1915 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:red" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:red" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1916
1917
1918 = 8.  Order Info =
1919
1920
1921 Part Number: (% style="color:blue" %)**LSN50-XX-YY  **(%%)**or  (% style="color:blue" %)LSN50-v2-XX-YY-ZZ(%%)**
1922
1923 (% style="color:blue" %)**XX**(%%): The default frequency band
1924
1925 * (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1926 * (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1927 * (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1928 * (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1929 * (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1930 * (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1931 * (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1932 * (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1933
1934 (% style="color:blue" %)**YY**(%%)**: **Hole Option
1935
1936 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1937 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1938 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole (LSN50 v2 doesn't have this version)
1939 * (% style="color:red" %)**NH**(%%): No Hole
1940
1941 (% style="color:blue" %)**ZZ**(%%)**: **Battery Option ( Only valid for v2 model)
1942
1943 * (% style="color:red" %)**4**(%%): with 4000mAh battery
1944 * (% style="color:red" %)**8**(%%): with 8500mAg battery
1945
1946 = 9. ​ Packing Info =
1947
1948
1949 (% style="color:blue" %)**For LSN50**(%%)**:**
1950
1951 **Package Includes**:
1952
1953 * LSN50 LoRa Sensor Node x 1
1954
1955 **Dimension and weight**:
1956
1957 * Device Size: 8 x 6.5 x 5 cm
1958 * Device Weight: 137g
1959 * Package Size / pcs : 9 x 7 x 6cm
1960 * Weight / pcs : 160g
1961
1962 (% style="color:blue" %)**For LSN50 v2**(%%)**:**
1963
1964 **Package Includes**:
1965
1966 * LSN50 v2 LoRa Sensor Node x 1
1967 * External antenna x 1
1968 * Spring Antenna (evaluate purpose)
1969
1970 **Dimension and weight**:
1971
1972 * Device Size: 9.7 x 6.5 x 4.7 cm
1973 * Device Weight: 150g
1974 * Package Size / pcs : 14.0 x 8x 5 cm
1975 * Weight / pcs : 180g
1976
1977 = 10.  ​Support =
1978
1979
1980 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1981 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1982
1983 = 11.  References =
1984
1985
1986 * [[Product Page>>url:http://www.dragino.com/products/lora/item/128-lsn50.html]]
1987 * [[Data Sheet, Document Base>>https://www.dropbox.com/sh/djkxs7mr17y94mi/AABVlWbM9uzK9OA3mXyAT10Za?dl=0]]
1988 * [[Image Download>>url:https://github.com/dragino/LoRa_STM32/tree/master/LSN50.hex]]
1989 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0