Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61 == 1.3  Specification ==
62
63 === 1.3.1  Rated environmental conditions ===
64
65 [[image:image-20220610154839-1.png]]
66
67 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
68
69 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
70
71
72
73 === 1.3.2  Effective measurement range Reference beam pattern ===
74
75 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
76
77
78
79 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
80
81 (% style="display:none" %) (%%)
82
83
84 == 1.5 ​ Applications ==
85
86 * Horizontal distance measurement
87 * Liquid level measurement
88 * Parking management system
89 * Object proximity and presence detection
90 * Intelligent trash can management system
91 * Robot obstacle avoidance
92 * Automatic control
93 * Sewer
94 * Bottom water level monitoring
95
96
97
98 == 1.6  Pin mapping and power on ==
99
100
101 [[image:1654847583902-256.png]]
102
103
104 = 2.  Configure LDDS75 to connect to LoRaWAN network =
105
106 == 2.1  How it works ==
107
108 (((
109 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
110 )))
111
112 (((
113 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
114 )))
115
116
117 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
118
119 (((
120 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
121 )))
122
123 (((
124 [[image:1654827857527-556.png]]
125 )))
126
127 (((
128 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
129 )))
130
131 (((
132 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
133 )))
134
135 (((
136 Each LSPH01 is shipped with a sticker with the default device EUI as below:
137 )))
138
139 [[image:image-20220607170145-1.jpeg]]
140
141
142
143 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
144
145
146 **Register the device**
147
148
149 [[image:1654592600093-601.png]]
150
151
152
153 **Add APP EUI and DEV EUI**
154
155 [[image:1654592619856-881.png]]
156
157
158
159 **Add APP EUI in the application**
160
161 [[image:1654592632656-512.png]]
162
163
164
165 **Add APP KEY**
166
167 [[image:1654592653453-934.png]]
168
169
170 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
171
172
173 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
174
175 [[image:image-20220607170442-2.png]]
176
177
178 (((
179 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
180 )))
181
182 [[image:1654833501679-968.png]]
183
184
185
186 == 2.3  ​Uplink Payload ==
187
188 (((
189 LLDS12 will uplink payload via LoRaWAN with below payload format: 
190 )))
191
192 (((
193 Uplink payload includes in total 11 bytes.
194 )))
195
196 (((
197
198 )))
199
200 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
201 |=(% style="width: 62.5px;" %)(((
202 **Size (bytes)**
203 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
204 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
205 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
206 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
207 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
208 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
209 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
210 )))
211
212 [[image:1654833689380-972.png]]
213
214
215
216 === 2.3.1  Battery Info ===
217
218
219 Check the battery voltage for LLDS12.
220
221 Ex1: 0x0B45 = 2885mV
222
223 Ex2: 0x0B49 = 2889mV
224
225
226
227 === 2.3.2  DS18B20 Temperature sensor ===
228
229 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
230
231
232 **Example**:
233
234 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
235
236 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
237
238
239
240 === 2.3.3  Distance ===
241
242 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
243
244
245 **Example**:
246
247 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
248
249
250
251 === 2.3.4  Distance signal strength ===
252
253 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
254
255
256 **Example**:
257
258 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
259
260 Customers can judge whether they need to adjust the environment based on the signal strength.
261
262
263
264 === 2.3.5  Interrupt Pin ===
265
266 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
267
268 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
269
270 **Example:**
271
272 0x00: Normal uplink packet.
273
274 0x01: Interrupt Uplink Packet.
275
276
277
278 === 2.3.6  LiDAR temp ===
279
280 Characterize the internal temperature value of the sensor.
281
282 **Example: **
283 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
284 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
285
286
287
288 === 2.3.7  Message Type ===
289
290 (((
291 For a normal uplink payload, the message type is always 0x01.
292 )))
293
294 (((
295 Valid Message Type:
296 )))
297
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
300 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
301 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
302 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
303
304 === 2.3.8  Decode payload in The Things Network ===
305
306 While using TTN network, you can add the payload format to decode the payload.
307
308
309 [[image:1654592762713-715.png]]
310
311 (((
312 The payload decoder function for TTN is here:
313 )))
314
315 (((
316 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
317 )))
318
319
320
321 == 2.4  Uplink Interval ==
322
323 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
324
325
326
327 == 2.5  ​Show Data in DataCake IoT Server ==
328
329 (((
330 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
331 )))
332
333 (((
334
335 )))
336
337 (((
338 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
339 )))
340
341 (((
342 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
343 )))
344
345
346 [[image:1654592790040-760.png]]
347
348
349 [[image:1654592800389-571.png]]
350
351
352 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
353
354 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
355
356 [[image:1654832691989-514.png]]
357
358
359 [[image:1654592833877-762.png]]
360
361
362 [[image:1654832740634-933.png]]
363
364
365
366 (((
367 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
368 )))
369
370 (((
371
372 )))
373
374 [[image:1654833065139-942.png]]
375
376
377
378 [[image:1654833092678-390.png]]
379
380
381
382 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
383
384 [[image:1654833163048-332.png]]
385
386
387
388 == 2.6  Frequency Plans ==
389
390 (((
391 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
392 )))
393
394
395 === 2.6.1  EU863-870 (EU868) ===
396
397 (((
398 (% style="color:blue" %)**Uplink:**
399 )))
400
401 (((
402 868.1 - SF7BW125 to SF12BW125
403 )))
404
405 (((
406 868.3 - SF7BW125 to SF12BW125 and SF7BW250
407 )))
408
409 (((
410 868.5 - SF7BW125 to SF12BW125
411 )))
412
413 (((
414 867.1 - SF7BW125 to SF12BW125
415 )))
416
417 (((
418 867.3 - SF7BW125 to SF12BW125
419 )))
420
421 (((
422 867.5 - SF7BW125 to SF12BW125
423 )))
424
425 (((
426 867.7 - SF7BW125 to SF12BW125
427 )))
428
429 (((
430 867.9 - SF7BW125 to SF12BW125
431 )))
432
433 (((
434 868.8 - FSK
435 )))
436
437 (((
438
439 )))
440
441 (((
442 (% style="color:blue" %)**Downlink:**
443 )))
444
445 (((
446 Uplink channels 1-9 (RX1)
447 )))
448
449 (((
450 869.525 - SF9BW125 (RX2 downlink only)
451 )))
452
453
454
455 === 2.6.2  US902-928(US915) ===
456
457 (((
458 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
459 )))
460
461 (((
462 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
463 )))
464
465 (((
466 After Join success, the end node will switch to the correct sub band by:
467 )))
468
469 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
470 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
471
472 === 2.6.3  CN470-510 (CN470) ===
473
474 (((
475 Used in China, Default use CHE=1
476 )))
477
478 (((
479 (% style="color:blue" %)**Uplink:**
480 )))
481
482 (((
483 486.3 - SF7BW125 to SF12BW125
484 )))
485
486 (((
487 486.5 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491 486.7 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 486.9 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 487.1 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 487.3 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 487.5 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.7 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515
516 )))
517
518 (((
519 (% style="color:blue" %)**Downlink:**
520 )))
521
522 (((
523 506.7 - SF7BW125 to SF12BW125
524 )))
525
526 (((
527 506.9 - SF7BW125 to SF12BW125
528 )))
529
530 (((
531 507.1 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 507.3 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.5 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.7 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.9 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 508.1 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 505.3 - SF12BW125 (RX2 downlink only)
556 )))
557
558
559
560
561 === 2.6.4  AU915-928(AU915) ===
562
563 (((
564 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
565 )))
566
567 (((
568 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
569 )))
570
571 (((
572
573 )))
574
575 (((
576 After Join success, the end node will switch to the correct sub band by:
577 )))
578
579 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
580 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
581
582 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
583
584 (((
585 (% style="color:blue" %)**Default Uplink channel:**
586 )))
587
588 (((
589 923.2 - SF7BW125 to SF10BW125
590 )))
591
592 (((
593 923.4 - SF7BW125 to SF10BW125
594 )))
595
596 (((
597
598 )))
599
600 (((
601 (% style="color:blue" %)**Additional Uplink Channel**:
602 )))
603
604 (((
605 (OTAA mode, channel added by JoinAccept message)
606 )))
607
608 (((
609
610 )))
611
612 (((
613 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
614 )))
615
616 (((
617 922.2 - SF7BW125 to SF10BW125
618 )))
619
620 (((
621 922.4 - SF7BW125 to SF10BW125
622 )))
623
624 (((
625 922.6 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 922.8 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 923.0 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637 922.0 - SF7BW125 to SF10BW125
638 )))
639
640 (((
641
642 )))
643
644 (((
645 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
646 )))
647
648 (((
649 923.6 - SF7BW125 to SF10BW125
650 )))
651
652 (((
653 923.8 - SF7BW125 to SF10BW125
654 )))
655
656 (((
657 924.0 - SF7BW125 to SF10BW125
658 )))
659
660 (((
661 924.2 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665 924.4 - SF7BW125 to SF10BW125
666 )))
667
668 (((
669 924.6 - SF7BW125 to SF10BW125
670 )))
671
672 (((
673
674 )))
675
676 (((
677 (% style="color:blue" %)**Downlink:**
678 )))
679
680 (((
681 Uplink channels 1-8 (RX1)
682 )))
683
684 (((
685 923.2 - SF10BW125 (RX2)
686 )))
687
688
689
690
691 === 2.6.6  KR920-923 (KR920) ===
692
693 (((
694 (% style="color:blue" %)**Default channel:**
695 )))
696
697 (((
698 922.1 - SF7BW125 to SF12BW125
699 )))
700
701 (((
702 922.3 - SF7BW125 to SF12BW125
703 )))
704
705 (((
706 922.5 - SF7BW125 to SF12BW125
707 )))
708
709 (((
710
711 )))
712
713 (((
714 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
715 )))
716
717 (((
718 922.1 - SF7BW125 to SF12BW125
719 )))
720
721 (((
722 922.3 - SF7BW125 to SF12BW125
723 )))
724
725 (((
726 922.5 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 922.7 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 922.9 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738 923.1 - SF7BW125 to SF12BW125
739 )))
740
741 (((
742 923.3 - SF7BW125 to SF12BW125
743 )))
744
745 (((
746
747 )))
748
749 (((
750 (% style="color:blue" %)**Downlink:**
751 )))
752
753 (((
754 Uplink channels 1-7(RX1)
755 )))
756
757 (((
758 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
759 )))
760
761
762
763
764 === 2.6.7  IN865-867 (IN865) ===
765
766 (((
767 (% style="color:blue" %)**Uplink:**
768 )))
769
770 (((
771 865.0625 - SF7BW125 to SF12BW125
772 )))
773
774 (((
775 865.4025 - SF7BW125 to SF12BW125
776 )))
777
778 (((
779 865.9850 - SF7BW125 to SF12BW125
780 )))
781
782 (((
783
784 )))
785
786 (((
787 (% style="color:blue" %)**Downlink:**
788 )))
789
790 (((
791 Uplink channels 1-3 (RX1)
792 )))
793
794 (((
795 866.550 - SF10BW125 (RX2)
796 )))
797
798
799
800
801 == 2.7  LED Indicator ==
802
803 The LLDS12 has an internal LED which is to show the status of different state.
804
805 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
806 * Blink once when device transmit a packet.
807
808 == 2.8  ​Firmware Change Log ==
809
810
811 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812
813
814 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
815
816
817
818 = 3.  LiDAR ToF Measurement =
819
820 == 3.1 Principle of Distance Measurement ==
821
822 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
823
824 [[image:1654831757579-263.png]]
825
826
827
828 == 3.2 Distance Measurement Characteristics ==
829
830 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831
832 [[image:1654831774373-275.png]]
833
834
835 (((
836 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
837 )))
838
839 (((
840 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
841 )))
842
843 (((
844 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
845 )))
846
847
848 (((
849 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
850 )))
851
852
853 [[image:1654831797521-720.png]]
854
855
856 (((
857 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
858 )))
859
860 [[image:1654831810009-716.png]]
861
862
863 (((
864 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
865 )))
866
867
868
869 == 3.3 Notice of usage: ==
870
871 Possible invalid /wrong reading for LiDAR ToF tech:
872
873 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
874 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
875 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
876 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
877
878 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
879
880 (((
881 (((
882 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
883 )))
884 )))
885
886 * (((
887 (((
888 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
889 )))
890 )))
891 * (((
892 (((
893 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
894 )))
895 )))
896
897 (((
898 (((
899
900 )))
901
902 (((
903 There are two kinds of commands to configure LLDS12, they are:
904 )))
905 )))
906
907 * (((
908 (((
909 (% style="color:#4f81bd" %)** General Commands**.
910 )))
911 )))
912
913 (((
914 (((
915 These commands are to configure:
916 )))
917 )))
918
919 * (((
920 (((
921 General system settings like: uplink interval.
922 )))
923 )))
924 * (((
925 (((
926 LoRaWAN protocol & radio related command.
927 )))
928 )))
929
930 (((
931 (((
932 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
933 )))
934 )))
935
936 (((
937 (((
938
939 )))
940 )))
941
942 * (((
943 (((
944 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
945 )))
946 )))
947
948 (((
949 (((
950 These commands only valid for LLDS12, as below:
951 )))
952 )))
953
954
955
956 == 4.1  Set Transmit Interval Time ==
957
958 Feature: Change LoRaWAN End Node Transmit Interval.
959
960 (% style="color:#037691" %)**AT Command: AT+TDC**
961
962 [[image:image-20220607171554-8.png]]
963
964
965 (((
966 (% style="color:#037691" %)**Downlink Command: 0x01**
967 )))
968
969 (((
970 Format: Command Code (0x01) followed by 3 bytes time value.
971 )))
972
973 (((
974 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
975 )))
976
977 * (((
978 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
979 )))
980 * (((
981 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
982 )))
983
984 == 4.2  Set Interrupt Mode ==
985
986 Feature, Set Interrupt mode for GPIO_EXIT.
987
988 (% style="color:#037691" %)**AT Command: AT+INTMOD**
989
990 [[image:image-20220610105806-2.png]]
991
992
993 (((
994 (% style="color:#037691" %)**Downlink Command: 0x06**
995 )))
996
997 (((
998 Format: Command Code (0x06) followed by 3 bytes.
999 )))
1000
1001 (((
1002 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1003 )))
1004
1005 * (((
1006 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 )))
1008 * (((
1009 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1010 )))
1011
1012 == 4.3  Get Firmware Version Info ==
1013
1014 Feature: use downlink to get firmware version.
1015
1016 (% style="color:#037691" %)**Downlink Command: 0x26**
1017
1018 [[image:image-20220607171917-10.png]]
1019
1020 * Reply to the confirmation package: 26 01
1021 * Reply to non-confirmed packet: 26 00
1022
1023 Device will send an uplink after got this downlink command. With below payload:
1024
1025 Configures info payload:
1026
1027 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1028 |=(((
1029 **Size(bytes)**
1030 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1031 |**Value**|Software Type|(((
1032 Frequency
1033
1034 Band
1035 )))|Sub-band|(((
1036 Firmware
1037
1038 Version
1039 )))|Sensor Type|Reserve|(((
1040 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1041 Always 0x02
1042 )))
1043
1044 **Software Type**: Always 0x03 for LLDS12
1045
1046
1047 **Frequency Band**:
1048
1049 *0x01: EU868
1050
1051 *0x02: US915
1052
1053 *0x03: IN865
1054
1055 *0x04: AU915
1056
1057 *0x05: KZ865
1058
1059 *0x06: RU864
1060
1061 *0x07: AS923
1062
1063 *0x08: AS923-1
1064
1065 *0x09: AS923-2
1066
1067 *0xa0: AS923-3
1068
1069
1070 **Sub-Band**: value 0x00 ~~ 0x08
1071
1072
1073 **Firmware Version**: 0x0100, Means: v1.0.0 version
1074
1075
1076 **Sensor Type**:
1077
1078 0x01: LSE01
1079
1080 0x02: LDDS75
1081
1082 0x03: LDDS20
1083
1084 0x04: LLMS01
1085
1086 0x05: LSPH01
1087
1088 0x06: LSNPK01
1089
1090 0x07: LLDS12
1091
1092
1093
1094 = 5.  Battery & How to replace =
1095
1096 == 5.1  Battery Type ==
1097
1098 (((
1099 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1100 )))
1101
1102 (((
1103 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1104 )))
1105
1106 [[image:1654593587246-335.png]]
1107
1108
1109 Minimum Working Voltage for the LLDS12:
1110
1111 LLDS12:  2.45v ~~ 3.6v
1112
1113
1114
1115 == 5.2  Replace Battery ==
1116
1117 (((
1118 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1119 )))
1120
1121 (((
1122 And make sure the positive and negative pins match.
1123 )))
1124
1125
1126
1127 == 5.3  Power Consumption Analyze ==
1128
1129 (((
1130 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1131 )))
1132
1133 (((
1134 Instruction to use as below:
1135 )))
1136
1137
1138 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1139
1140 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1141
1142
1143 **Step 2**: Open it and choose
1144
1145 * Product Model
1146 * Uplink Interval
1147 * Working Mode
1148
1149 And the Life expectation in difference case will be shown on the right.
1150
1151 [[image:1654593605679-189.png]]
1152
1153
1154 The battery related documents as below:
1155
1156 * (((
1157 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1158 )))
1159 * (((
1160 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1161 )))
1162 * (((
1163 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1164 )))
1165
1166 [[image:image-20220607172042-11.png]]
1167
1168
1169
1170 === 5.3.1  ​Battery Note ===
1171
1172 (((
1173 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1174 )))
1175
1176
1177
1178 === ​5.3.2  Replace the battery ===
1179
1180 (((
1181 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1182 )))
1183
1184 (((
1185 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1186 )))
1187
1188
1189
1190 = 6.  Use AT Command =
1191
1192 == 6.1  Access AT Commands ==
1193
1194 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1195
1196 [[image:1654593668970-604.png]]
1197
1198 **Connection:**
1199
1200 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1201
1202 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1203
1204 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1205
1206
1207 (((
1208 (((
1209 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1210 )))
1211
1212 (((
1213 LLDS12 will output system info once power on as below:
1214 )))
1215 )))
1216
1217
1218 [[image:1654593712276-618.png]]
1219
1220 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1221
1222
1223 = 7.  FAQ =
1224
1225 == 7.1  How to change the LoRa Frequency Bands/Region ==
1226
1227 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1228 When downloading the images, choose the required image file for download. ​
1229
1230
1231 = 8.  Trouble Shooting =
1232
1233 == 8.1  AT Commands input doesn’t work ==
1234
1235
1236 (((
1237 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1238 )))
1239
1240
1241 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1242
1243
1244 (((
1245 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1246 )))
1247
1248 (((
1249 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1250 )))
1251
1252 (((
1253
1254 )))
1255
1256 (((
1257 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1258 )))
1259
1260 (((
1261 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1262 )))
1263
1264
1265
1266 = 9.  Order Info =
1267
1268
1269 Part Number: (% style="color:blue" %)**LLDS12-XX**
1270
1271
1272 (% style="color:blue" %)**XX**(%%): The default frequency band
1273
1274 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1275 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1276 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1277 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1278 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1279 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1280 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1281 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1282
1283
1284 = 10. ​ Packing Info =
1285
1286
1287 **Package Includes**:
1288
1289 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1290
1291 **Dimension and weight**:
1292
1293 * Device Size: cm
1294 * Device Weight: g
1295 * Package Size / pcs : cm
1296 * Weight / pcs : g
1297
1298
1299 = 11.  ​Support =
1300
1301 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1302 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0