Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220613162008-1.png||_mstalt="428142" height="510" width="334"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1. Introduction =
17
18 == 1.1 What is LHT65N Temperature & Humidity Sensor ==
19
20
21 (((
22 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor.**
23 )))
24
25 (((
26 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
27 )))
28
29 (((
30 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
31 )))
32
33 (((
34 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
35 )))
36
37 (((
38 LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
39 )))
40
41 (((
42 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
43 )))
44
45
46
47 == 1.2 Features ==
48
49
50 * LoRaWAN v1.0.3 Class A protocol
51 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
52 * AT Commands to change parameters
53 * Remote configure parameters via LoRaWAN Downlink
54 * Firmware upgradeable via program port
55 * Built-in 2400mAh battery for up to 10 years of use.
56 * Built-in Temperature & Humidity sensor
57 * Optional External Sensors
58 * Tri-color LED to indicate working status
59 * Datalog feature (Max 3328 records)
60
61 == 1.3 Specification ==
62
63
64 (% style="color:#037691" %)**Built-in Temperature Sensor:**
65
66 * Resolution: 0.01 °C
67 * Accuracy Tolerance : Typ ±0.3 °C
68 * Long Term Drift: < 0.02 °C/yr
69 * Operating Range: -40 ~~ 85 °C
70
71 (% style="color:#037691" %)**Built-in Humidity Sensor:**
72
73 * Resolution: 0.04 %RH
74 * Accuracy Tolerance : Typ ±3 %RH
75 * Long Term Drift: < 0.02 °C/yr
76 * Operating Range: 0 ~~ 96 %RH
77
78 (% style="color:#037691" %)**External Temperature Sensor:**
79
80 * Resolution: 0.0625 °C
81 * ±0.5°C accuracy from -10°C to +85°C
82 * ±2°C accuracy from -55°C to +125°C
83 * Operating Range: -55 °C ~~ 125 °C
84
85 = 2. Connect LHT65N to IoT Server =
86
87 == 2.1 How does LHT65N work? ==
88
89
90 (((
91 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
92 )))
93
94 (((
95 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
96 )))
97
98
99 == 2.2 How to Activate LHT65N? ==
100
101
102 (((
103 The LHT65N has two working modes:
104 )))
105
106 * (((
107 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
108 )))
109 * (((
110 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
111 )))
112
113 (((
114 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
115 )))
116
117
118 [[image:image-20220515123819-1.png||_mstalt="430742" height="379" width="317"]]
119
120 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
121 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
122 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
123 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
126 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
127 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
128 )))
129 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
130
131 == 2.3 Example to join LoRaWAN network ==
132
133
134 (% class="wikigeneratedid" %)
135 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
136
137
138 (% class="wikigeneratedid" %)
139 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
140
141
142 (((
143 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network||_mstvisible="2"]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
144 )))
145
146
147 === 2.3.1 Step 1: Create Device n TTN ===
148
149
150 (((
151 Create a device in TTN V3 with the OTAA keys from LHT65N.
152 )))
153
154 (((
155 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
156 )))
157
158 [[image:image-20230426083319-1.png]]
159
160 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
161
162 Add APP EUI in the application.
163
164
165 [[image:image-20220522232916-3.png||_mstalt="430495"]]
166
167
168 [[image:image-20220522232932-4.png||_mstalt="430157"]]
169
170
171 [[image:image-20220522232954-5.png||_mstalt="431847"]]
172
173
174
175 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
176
177
178 [[image:image-20220522233026-6.png||_mstalt="429403"]]
179
180
181 Input APP EUI,  APP KEY and DEV EUI:
182
183
184 [[image:image-20220522233118-7.png||_mstalt="430430"]]
185
186
187 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
188
189
190 (((
191 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
192 )))
193
194 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
195
196
197 == 2.4 Uplink Payload   ( Fport~=2) ==
198
199
200 (((
201 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
202 )))
203
204 (((
205 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
206 )))
207
208 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
209 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
210 **Size(bytes)**
211 )))|=(% style="width: 30px;background-color:#D9E2F3" %)(((
212 **2**
213 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
214 **2**
215 )))|=(% style="width: 100px;background-color:#D9E2F3" %)(((
216 **2**
217 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
218 **1**
219 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
220 **4**
221 )))
222 |(% style="width:97px" %)(((
223 **Value**
224 )))|(% style="width:39px" %)(((
225 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
226 )))|(% style="width:100px" %)(((
227 (((
228 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
229 )))
230 )))|(% style="width:77px" %)(((
231 (((
232 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
233 )))
234 )))|(% style="width:47px" %)(((
235 [[Ext>>||anchor="H2.4.5Ext23"]] #
236 )))|(% style="width:51px" %)(((
237 [[Ext value>>||anchor="H2.4.6Extvalue"]]
238 )))
239
240 * The First 6 bytes: has fix meanings for every LHT65N.
241
242 * The 7th byte (EXT #): defines the external sensor model.
243
244 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
245
246 === 2.4.1 Decoder in TTN V3 ===
247
248
249 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
250
251 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
252
253
254 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
255
256
257 === 2.4.2 BAT-Battery Info ===
258
259
260 These two bytes of BAT include the battery state and the actually voltage.
261
262 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
263 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
264 **Bit(bit)**
265 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
266 |(% style="width:66px" %)(((
267 **Value**
268 )))|(% style="width:250px" %)(((
269 BAT Status
270 00(b): Ultra Low ( BAT <= 2.50v)
271 01(b): Low (2.50v <=BAT <= 2.55v)
272 10(b): OK (2.55v <= BAT <=2.65v)
273 11(b): Good (BAT >= 2.65v)
274 )))|(% style="width:152px" %)Actually BAT voltage
275
276 **(b)stands for binary**
277
278
279 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
280
281
282 Check the battery voltage for LHT65N.
283
284 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
285
286 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
287
288 === 2.4.3 Built-in Temperature ===
289
290
291 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
292
293 * Temperature:  0x0ABB/100=27.47℃
294
295 [[image:image-20220522235639-3.png||_mstalt="432120"]]
296
297 * Temperature:  (0xF5C6-65536)/100=-26.18℃
298
299 === 2.4.4 Built-in Humidity ===
300
301
302 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
303
304 * Humidity:    0x025C/10=60.4%
305
306 === 2.4.5 Ext # ===
307
308
309 Bytes for External Sensor:
310
311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
312 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Value**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)**External Sensor Type**
313 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
314 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
315
316 === 2.4.6 Ext value ===
317
318 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
319
320
321 [[image:image-20220522235639-5.png||_mstalt="432848"]]
322
323
324 * DS18B20 temp=0x0ADD/100=27.81℃
325
326 The last 2 bytes of data are meaningless
327
328
329
330 [[image:image-20220522235639-6.png||_mstalt="433212"]]
331
332
333 * External temperature= (0xF54F-65536)/100=-27.37℃
334
335 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
336
337 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
338
339 The last 2 bytes of data are meaningless
340
341 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
342
343
344
345 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
346
347
348 (((
349 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
350 )))
351
352
353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
354 |=(% style="width: 50px;background-color:#D9E2F3" %)(((
355 **Size(bytes)**
356 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
357 **2**
358 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
359 **2**
360 )))|=(% style="width: 120px;background-color:#D9E2F3" %)(((
361 **2**
362 )))|=(% style="width: 50px;background-color:#D9E2F3" %)(((
363 **1**
364 )))|=(% style="width: 70px;background-color:#D9E2F3" %)(((
365 **4**
366 )))
367 |(% style="width:110px" %)(((
368 **Value**
369 )))|(% style="width:71px" %)(((
370 External temperature
371 )))|(% style="width:99px" %)(((
372 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
373 )))|(% style="width:132px" %)(((
374 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
375 )))|(% style="width:54px" %)(((
376 Status & Ext
377 )))|(% style="width:64px" %)(((
378 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
379 )))
380
381 * **Battery status & Built-in Humidity**
382
383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
384 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
385 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
386 BAT Status
387 00(b): Ultra Low ( BAT <= 2.50v)
388 01(b): Low  (2.50v <=BAT <= 2.55v)
389 10(b): OK   (2.55v <= BAT <=2.65v)
390 11(b): Good   (BAT >= 2.65v)
391 )))|(% style="width:132px" %)(((
392 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
393 )))
394
395 * **Status & Ext Byte**
396
397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
398 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
399 |=(% style="width: 96px;" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
400
401 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
402 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
403 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
404
405 ==== 2.4.6.3 Ext~=6, ADC Sensor (use with E2 Cable) ====
406
407
408 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
409
410 be used to power the external ADC sensor; user can control the power on time for this
411
412 (% style="color:blue" %)**sensor by setting:**
413
414 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
415
416 **For example:**
417
418 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
419
420
421 Or use **downlink command A2** to set the same.
422
423 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
424
425 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
426
427 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
428
429
430 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
431
432 [[image:image-20220628150714-4.png||_mstalt="431054"]]
433
434
435 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
436
437
438 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
439
440 [[image:image-20220628151005-5.png||_mstalt="429546"]]
441
442
443 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
444
445 [[image:image-20220628151056-6.png||_mstalt="431873"]]
446
447
448 3) Within range
449
450 [[image:image-20220628151143-7.png||_mstalt="431210"]]
451
452
453
454 ==== 2.4.6.4 Ext~=2 TMP117 Sensor (Since Firmware v1.3) ====
455
456
457 [[image:image-20220927095645-1.png||_mstalt="433771" height="534" width="460"]]
458
459
460 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
461
462 [[image:image-20220906102307-7.png||_mstalt="430443"]]
463
464
465 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
466
467 The external cable NE2 can be use for MOD4 and MOD8
468
469
470
471 ==== 2.4.6.5 Ext~=4 Interrupt Mode (Since Firmware v1.3) ====
472
473
474 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
475
476
477 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
478
479 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
480
481 In Open State, the power consumption is the same as if there is no probe
482
483 In Close state, the power consumption will be 3uA higher than normal.
484
485 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
486
487
488 Ext=4,Interrupt Sensor:
489
490 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
491 |(% style="width:101px" %)(((
492 **AT+EXT=4,1**
493 )))|(% style="width:395px" %)(((
494 **Sent uplink packet in both rising and falling interrupt**
495 )))
496 |(% style="width:101px" %)(((
497 **AT+EXT=4,2**
498 )))|(% style="width:395px" %)(((
499 **Sent uplink packet only in falling interrupt**
500 )))
501 |(% style="width:101px" %)(((
502 **AT+EXT=4,3**
503 )))|(% style="width:395px" %)(((
504 **Sent uplink packet only in rising interrupt**
505 )))
506
507 Trigger by falling edge:
508
509 [[image:image-20220906101145-2.png||_mstalt="428324"]]
510
511
512 Trigger by raising edge:
513
514 [[image:image-20220906101145-3.png||_mstalt="428688"]]
515
516
517
518 ==== 2.4.6.6 Ext~=8 Counting Mode(Since Firmware v1.3) ====
519
520
521 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
522
523
524 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
525
526 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
527
528
529 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
530
531 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
532
533
534 Ext=8, Counting Sensor ( 4 bytes):
535
536 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
537 |(% style="width:131px" %)(((
538 **AT+EXT=8,0**
539 )))|(% style="width:195px" %)(((
540 **Count at falling interrupt**
541 )))
542 |(% style="width:131px" %)(((
543 **AT+EXT=8,1**
544 )))|(% style="width:195px" %)(((
545 **Count at rising interrupt**
546 )))
547 |(% style="width:131px" %)(((
548 **AT+SETCNT=60**
549 )))|(% style="width:195px" %)(((
550 **Sent current count to 60**
551 )))
552
553 [[image:image-20220906101320-6.png||_mstalt="428064"]]
554
555
556 (% style="color:blue" %)**A2 downlink Command:**
557
558 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
559
560 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
561
562 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
563
564 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
565
566 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
567
568
569 == 2.5 Show data on Datacake ==
570
571
572 (((
573 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
574 )))
575
576
577 (((
578 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
579 )))
580
581 (((
582 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
583 )))
584
585
586 (((
587 Add Datacake:
588 )))
589
590
591 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
592
593
594
595 Select default key as Access Key:
596
597
598 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
599
600
601 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
602
603
604 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
605
606
607 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
608
609
610 == 2.6 Datalog Feature ==
611
612
613 (((
614 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
615 )))
616
617
618 === 2.6.1 Ways to get datalog via LoRaWAN ===
619
620
621 There are two methods:
622
623 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
624
625
626 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
627
628
629 (% style="color:red" %)**Note for method 2:**
630
631 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
632 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
633
634 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
635
636
637 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
638
639
640 === 2.6.2 Unix TimeStamp ===
641
642
643 LHT65N uses Unix TimeStamp format based on
644
645
646 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
647
648
649
650 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
651
652 Below is the converter example
653
654 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
655
656
657 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
658
659
660 === 2.6.3 Set Device Time ===
661
662
663 (((
664 (% style="color:blue" %)**There are two ways to set device's time:**
665 )))
666
667 (((
668 **1.  Through LoRaWAN MAC Command (Default settings)**
669 )))
670
671 (((
672 User need to set SYNCMOD=1 to enable sync time via MAC command.
673 )))
674
675 (((
676 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
677 )))
678
679 (((
680 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
681 )))
682
683
684 (((
685 **2. Manually Set Time**
686 )))
687
688 (((
689 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
690 )))
691
692
693 === 2.6.4 Poll sensor value ===
694
695
696 User can poll sensor value based on timestamps from the server. Below is the downlink command.
697
698 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
699 |(% style="width:58px" %)1byte|(% style="width:128px" %)4bytes|(% style="width:123px" %)4bytes|(% style="width:116px" %)1byte
700 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
701
702 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
703
704 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
705
706 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
707
708 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
709
710
711 === 2.6.5 Datalog Uplink payload ===
712
713
714 The Datalog poll reply uplink will use below payload format.
715
716 **Retrieval data payload:**
717
718 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
719 |=(% style="width: 60px;background-color:#D9E2F3" %)(((
720 **Size(bytes)**
721 )))|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 90px;background-color:#D9E2F3" %)**2**|=(% style="width: 70px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**1**|=(% style="width: 70px;background-color:#D9E2F3" %)**4**
722 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
723
724 **Poll message flag & Ext:**
725
726 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
727
728 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
729
730 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
731
732 * Poll Message Flag is set to 1.
733
734 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
735
736 For example, in US915 band, the max payload for different DR is:
737
738 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
739
740 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
741
742 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
743
744 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
745
746 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
747
748
749 **Example:**
750
751 If LHT65N has below data inside Flash:
752
753 [[image:image-20230426171833-4.png]]
754
755
756 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
757
758 Where : Start time: 60065F97 = time 21/1/19 04:27:03
759
760 Stop time: 60066DA7= time 21/1/19 05:27:03
761
762
763 **LHT65N will uplink this payload.**
764
765 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
766
767
768 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
769
770 Where the first 11 bytes is for the first entry:
771
772 7FFF089801464160065F97
773
774 Ext sensor data=0x7FFF/100=327.67
775
776 Temp=0x088E/100=22.00
777
778 Hum=0x014B/10=32.6
779
780 poll message flag & Ext=0x41,means reply data,Ext=1
781
782 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
783
784
785 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
786
787
788 (((
789 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
790 )))
791
792 (((
793 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
794
795
796 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
797
798
799 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
800
801 (((
802 (% class="box infomessage" %)
803 (((
804 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
805
806 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
807
808 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
809
810 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
811
812 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
813
814 **AT+LEDALARM=1** :       Enable LED visual Alarm.
815 )))
816 )))
817
818 (% style="color:#4f81bd" %)**Downlink Command:**
819
820 AT+WMOD=1:  A501  ,  AT+WMOD=0 :  A600
821
822 AT+CITEMP=1 : A60001
823
824 AT+ARTEMP=1,60  :  A70001003C
825
826 AT+ARTEMP=-16,60 :  A7FFF0003C
827
828 AT+LEDALARM=1  :  3601
829
830
831 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
832
833 Total bytes: 8 bytes
834
835 **Example: **AA0100010001003C
836
837 WMOD=01
838
839 CITEMP=0001
840
841 TEMPlow=0001
842
843 TEMPhigh=003C
844
845
846 **DS18B20 and TMP117 Threshold Alarm**
847
848 **~ AT+WMOD=1,60,-10,20**
849
850 (% style="color:#4f81bd" %)**Downlink Command:**
851
852 **Example: **A5013CFC180014
853
854 MOD=01
855
856 CITEMP=3C(S)
857
858 TEMPlow=FC18
859
860 TEMPhigh=0014
861
862
863 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
864
865 **AT+WMOD=2,60,5** 
866
867 (% style="color:#4f81bd" %)**Downlink Command:**
868
869 **Example: **A5023C05
870
871 MOD=02
872
873 CITEMP=3C(S)
874
875 temperature fluctuation=05
876
877
878 **Sampling multiple times and uplink together**
879
880 **AT+WMOD=3,1,60,20,-16,32,1**   
881
882 Explain:
883
884 * (% style="color:#037691" %)**parameter1:**(%%)Set Working Mode to **Mode 3**
885 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
886 * (% style="color:#037691" %)**parameter3:**(%%)Sampling Interval is **60**s.
887 * (% style="color:#037691" %)**parameter4:**(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
888 * (% style="color:#037691" %)**parameter5 & parameter6:**(%%)Temperature alarm range is **-16** to **32**°C,
889 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
890
891 (% style="color:#4f81bd" %)**Downlink Command:**
892
893 **Example: **A50301003C14FFF0002001
894
895 MOD=03
896
897 TEMP=DS18B20
898
899 CITEMP=003C(S)
900
901 Total number of acquisitions=14
902
903 TEMPlow=FFF0
904
905 TEMPhigh=0020
906
907 ARTEMP=01
908
909 **Uplink payload( Fport=3)**
910
911 **Example: CBEA**01**0992**//0A41//**09C4**
912
913 BatV=CBEA
914
915 TEMP=DS18B20
916
917 Temp1=0992  ~/~/ 24.50℃
918
919 Temp2=0A41  ~/~/ 26.25℃
920
921 Temp3=09C4  ~/~/ 25.00℃
922
923 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
924
925 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
926 )))
927
928
929 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
930
931
932 (% class="box infomessage" %)
933 (((
934 (((
935 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
936 )))
937
938 (((
939 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
940 )))
941
942 (((
943 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
944 )))
945
946 (((
947 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
948 )))
949
950 (((
951 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
952 )))
953 )))
954
955 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
956
957 Total bytes: 8 bytes
958
959 **Example:**AA0100010001003C
960
961 WMOD=01
962
963 CITEMP=0001
964
965 TEMPlow=0001
966
967 TEMPhigh=003C
968
969
970 == 2.8 LED Indicator ==
971
972
973 The LHT65 has a triple color LED which for easy showing different stage .
974
975 While user press ACT button, the LED will work as per LED status with ACT button.
976
977 In a normal working state:
978
979 * For each uplink, the BLUE LED or RED LED will blink once.
980 BLUE LED when external sensor is connected.
981 * RED LED when external sensor is not connected
982 * For each success downlink, the PURPLE LED will blink once
983
984 == 2.9 installation ==
985
986
987 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
988
989
990 = 3. Sensors and Accessories =
991
992 == 3.1 E2 Extension Cable ==
993
994
995 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
996
997
998 **1m long breakout cable for LHT65N. Features:**
999
1000 * (((
1001 Use for AT Command, works for both LHT52/LHT65N
1002 )))
1003 * (((
1004 Update firmware for LHT65N, works for both LHT52/LHT65N
1005 )))
1006 * (((
1007 Supports ADC mode to monitor external ADC
1008 )))
1009 * (((
1010 Supports Interrupt mode
1011 )))
1012 * (((
1013 Exposed All pins from the LHT65N Type-C connector.
1014
1015
1016
1017 )))
1018
1019 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1020
1021
1022 == 3.2 E3 Temperature Probe ==
1023
1024
1025 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1026
1027
1028 Temperature sensor with 2 meters cable long
1029
1030 * Resolution: 0.0625 °C
1031 * ±0.5°C accuracy from -10°C to +85°C
1032 * ±2°C accuracy from -55°C to +125°C
1033 * Operating Range: -40 ~~ 125 °C
1034 * Working voltage 2.35v ~~ 5v
1035
1036
1037 == 3.3 E31F Temperature Probe ==
1038
1039
1040 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:65N-E31F.jpg||height="196" width="198"]]
1041
1042
1043 Temperature sensor with 1 meters cable long
1044
1045 **Built-in Temperature Sensor:**
1046
1047 * Resolution: 0.01 °C
1048 * Accuracy Tolerance : Typ ±0.3 °C
1049 * Long Term Drift: < 0.02 °C/yr
1050 * Operating Range: -40 ~~ 80 °C
1051
1052 **Built-in Humidity Sensor:**
1053
1054 * Resolution: 0.04 %RH
1055 * Accuracy Tolerance : Typ ±3 %RH
1056 * Long Term Drift: < 0.02 °C/yr
1057 * Operating Range: 0 ~~ 96 %RH
1058
1059
1060 **External Temperature Sensor :**
1061
1062 * Resolution: 0.01 °C
1063 * Accuracy Tolerance : Typical ±0.3 °C
1064 * Long Term Drift: < 0.02 °C/yr
1065 * Operating Range: -40 ~~ 125 °C
1066
1067 **External Humidity Sensor :**
1068
1069 * Resolution: 0.04 %RH
1070 * Accuracy Tolerance : Typ ±3 %RH
1071 * Long Term Drift: < 0.02 °C/yr
1072 * Operating Range: 0 ~~ 96 %RH
1073
1074
1075 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1076
1077
1078 (((
1079 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1080 )))
1081
1082 * (((
1083 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1084 )))
1085
1086 * (((
1087 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1088 )))
1089
1090 (((
1091 There are two kinds of commands to configure LHT65N, they are:
1092 )))
1093
1094 * (((
1095 (% style="color:#4f81bd" %)**General Commands**.
1096 )))
1097
1098 (((
1099 These commands are to configure:
1100 )))
1101
1102 1. (((
1103 General system settings like: uplink interval.
1104 )))
1105 1. (((
1106 LoRaWAN protocol & radio-related commands.
1107 )))
1108
1109 (((
1110 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1111 )))
1112
1113 * (((
1114 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1115 )))
1116
1117 (((
1118 These commands are only valid for LHT65N, as below:
1119 )))
1120
1121
1122 == 4.1 Set Transmit Interval Time ==
1123
1124
1125 Feature: Change LoRaWAN End Node Transmit Interval.
1126
1127
1128 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1129
1130 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1131 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1132 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1133 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1134
1135 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1136
1137 Format: Command Code (0x01) followed by 3 bytes time value.
1138
1139 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1140
1141 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1142
1143 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1144
1145 == 4.2 Set External Sensor Mode ==
1146
1147
1148 Feature: Change External Sensor Mode.
1149
1150
1151 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1152
1153
1154 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1155 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1156 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1157 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1158 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1159
1160 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1161
1162 Total bytes: 2 ~~ 5 bytes
1163
1164 **Example:**
1165
1166 * 0xA201: Set external sensor type to E1
1167
1168 * 0xA209: Same as AT+EXT=9
1169
1170 * 0xA20702003c: Same as AT+SETCNT=60
1171
1172 == 4.3 Enable/Disable uplink Temperature probe ID ==
1173
1174
1175 (((
1176 Feature: If PID is enabled, device will send the temperature probe ID on:
1177 )))
1178
1179 * (((
1180 First Packet after OTAA Join
1181 )))
1182 * (((
1183 Every 24 hours since the first packet.
1184 )))
1185
1186 (((
1187 PID is default set to disable (0)
1188
1189
1190 )))
1191
1192 (% style="color:#4f81bd" %)**AT Command:**
1193
1194 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1195 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1196 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1197
1198 (% style="color:#4f81bd" %)**Downlink Command:**
1199
1200 * **0xA800**  **~-~->** AT+PID=0
1201 * **0xA801**     **~-~->** AT+PID=1
1202
1203 == 4.4 Set Password ==
1204
1205
1206 Feature: Set device password, max 9 digits
1207
1208 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1209
1210 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1211 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1212 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1213 123456
1214
1215 OK
1216 )))
1217 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1218
1219 (% style="color:#4f81bd" %)**Downlink Command:**
1220
1221 No downlink command for this feature.
1222
1223
1224 == 4.5 Quit AT Command ==
1225
1226
1227 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1228
1229 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1230
1231 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1232 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1233 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1234
1235 (% style="color:#4f81bd" %)**Downlink Command:**
1236
1237 No downlink command for this feature.
1238
1239
1240 == 4.6 Set to sleep mode ==
1241
1242
1243 Feature: Set device to sleep mode
1244
1245 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1246 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1247
1248 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1249
1250 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1251 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1252 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1253 Clear all stored sensor data…
1254
1255 OK
1256 )))
1257
1258 (% style="color:#4f81bd" %)**Downlink Command:**
1259
1260 * There is no downlink command to set to Sleep mode.
1261
1262 == 4.7 Set system time ==
1263
1264
1265 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1266
1267 (% style="color:#4f81bd" %)**AT Command:**
1268
1269 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1270 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1271 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1272 OK
1273
1274 Set System time to 2021-01-20 00:59:12
1275 )))
1276
1277 (% style="color:#4f81bd" %)**Downlink Command:**
1278
1279 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1280
1281
1282 == 4.8 Set Time Sync Mode ==
1283
1284
1285 (((
1286 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1287 )))
1288
1289 (((
1290 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1291 )))
1292
1293 (% style="color:#4f81bd" %)**AT Command:**
1294
1295 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1296 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1297 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1298
1299 (% style="color:#4f81bd" %)**Downlink Command:**
1300
1301 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1302 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1303
1304
1305 == 4.9 Set Time Sync Interval ==
1306
1307
1308 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1309
1310 (% style="color:#4f81bd" %)**AT Command:**
1311
1312 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1313 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1314 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1315
1316 (% style="color:#4f81bd" %)**Downlink Command:**
1317
1318 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1319
1320
1321 == 4.10 Print data entries base on page. ==
1322
1323
1324 Feature: Print the sector data from start page to stop page (max is 416 pages).
1325
1326 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1327
1328 [[image:image-20230426164330-2.png]]
1329
1330
1331 (% style="color:#4f81bd" %)**Downlink Command:**
1332
1333 No downlink commands for feature
1334
1335
1336 == 4.11 Print last few data entries. ==
1337
1338
1339 Feature: Print the last few data entries
1340
1341 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1342
1343 [[image:image-20230426164932-3.png]]
1344
1345
1346 (% style="color:#4f81bd" %)**Downlink Command:**
1347
1348 No downlink commands for feature
1349
1350
1351 == 4.12 Clear Flash Record ==
1352
1353
1354 Feature: Clear flash storage for data log feature.
1355
1356
1357 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1358
1359
1360 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1361 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1362 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1363 Clear all stored sensor data…
1364
1365 OK
1366 )))
1367
1368 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1369
1370 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1371
1372 == 4.13 Auto Send None-ACK messages ==
1373
1374
1375 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1376
1377 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1378
1379 The default factory setting is 0
1380
1381 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1382 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1383 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1384
1385 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1386
1387 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1388
1389 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1390
1391
1392 Feature: Set internal and external temperature sensor alarms.
1393
1394 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1395 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1396 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1397
1398 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1399
1400 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1401
1402 0): Cancel
1403
1404 1): Threshold alarm
1405
1406 2): Fluctuation alarm
1407
1408
1409 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1410
1411 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1412
1413
1414 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1415
1416 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1417
1418 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1419
1420
1421 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1422
1423 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1424
1425 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1426
1427
1428 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1429
1430 0xA5 00 ~-~- AT+WMOD=0.
1431
1432 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1433
1434 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1435
1436 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1437
1438 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1439
1440
1441 = 5. Battery & How to replace =
1442
1443 == 5.1 Battery Type ==
1444
1445
1446 (((
1447 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1448 )))
1449
1450 (((
1451 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1452
1453
1454 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1455 )))
1456
1457 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1458
1459
1460 == 5.2 Replace Battery ==
1461
1462
1463 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1464
1465 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1466
1467
1468 == 5.3 Battery Life Analyze ==
1469
1470
1471 (((
1472 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1473 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1474 )))
1475
1476
1477 (((
1478 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1479 )))
1480
1481
1482 = 6. FAQ =
1483
1484 == 6.1 How to use AT Command? ==
1485
1486
1487 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1488
1489 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1490
1491
1492 **Connection:**
1493
1494 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1495 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1496 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1497
1498 (((
1499 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1500 )))
1501
1502
1503 Input password and ATZ to activate LHT65N,As shown below:
1504
1505 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1506
1507
1508 AT Command List is as below:
1509
1510 AT+<CMD>? :  Help on <CMD>
1511
1512 AT+<CMD> :  Run <CMD>
1513
1514 AT+<CMD>=<value> :  Set the value
1515
1516 AT+<CMD>=? :  Get the value
1517
1518 AT+DEBUG:  Set more info output
1519
1520 ATZ:  Trig a reset of the MCU
1521
1522 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1523
1524 AT+DEUI:  Get or Set the Device EUI
1525
1526 AT+DADDR:  Get or Set the Device Address
1527
1528 AT+APPKEY:  Get or Set the Application Key
1529
1530 AT+NWKSKEY:  Get or Set the Network Session Key
1531
1532 AT+APPSKEY:  Get or Set the Application Session Key
1533
1534 AT+APPEUI:  Get or Set the Application EUI
1535
1536 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1537
1538 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1539
1540 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1541
1542 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1543
1544 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1545
1546 AT+RX2FQ:  Get or Set the Rx2 window frequency
1547
1548 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1549
1550 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1551
1552 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1553
1554 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1555
1556 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1557
1558 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1559
1560 AT+NWKID:  Get or Set the Network ID
1561
1562 AT+FCU:  Get or Set the Frame Counter Uplink
1563
1564 AT+FCD:  Get or Set the Frame Counter Downlink
1565
1566 AT+CLASS:  Get or Set the Device Class
1567
1568 AT+JOIN:  Join network
1569
1570 AT+NJS:  Get the join status
1571
1572 AT+SENDB:  Send hexadecimal data along with the application port
1573
1574 AT+SEND:  Send text data along with the application port
1575
1576 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1577
1578 AT+RECV:  Print last received data in raw format
1579
1580 AT+VER:  Get current image version and Frequency Band
1581
1582 AT+CFM:  Get or Set the confirmation mode (0-1)
1583
1584 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1585
1586 AT+SNR:  Get the SNR of the last received packet
1587
1588 AT+RSSI:  Get the RSSI of the last received packet
1589
1590 AT+TDC:  Get or set the application data transmission interval in ms
1591
1592 AT+PORT:  Get or set the application port
1593
1594 AT+DISAT:  Disable AT commands
1595
1596 AT+PWORD: Set password, max 9 digits
1597
1598 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1599
1600 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1601
1602 AT+PDTA:  Print the sector data from start page to stop page
1603
1604 AT+PLDTA:  Print the last few sets of data
1605
1606 AT+CLRDTA:  Clear the storage, record position back to 1st
1607
1608 AT+SLEEP:  Set sleep mode
1609
1610 AT+EXT:  Get or Set external sensor model
1611
1612 AT+BAT:  Get the current battery voltage in mV
1613
1614 AT+CFG:  Print all configurations
1615
1616 AT+WMOD:  Get or Set Work Mode
1617
1618 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1619
1620 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1621
1622 AT+SETCNT:  Set the count at present
1623
1624 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1625
1626 AT+RPL:  Get or set response level
1627
1628 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1629
1630 AT+LEAPSEC:  Get or Set Leap Second
1631
1632 AT+SYNCMOD:  Get or Set time synchronization method
1633
1634 AT+SYNCTDC:  Get or set time synchronization interval in day
1635
1636 AT+PID:  Get or set the PID
1637
1638
1639 == 6.2 Where to use AT commands and Downlink commands ==
1640
1641
1642 **AT commands:**
1643
1644 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1645
1646
1647 **Downlink commands:**
1648
1649
1650 (% style="color:blue" %)**TTN:**
1651
1652 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1653
1654
1655
1656 (% style="color:blue" %)**Helium:**
1657
1658 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1659
1660
1661
1662 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1663
1664
1665 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1666
1667
1668 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1669
1670
1671
1672 (% style="color:blue" %)**Aws:**
1673
1674 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1675
1676
1677 == 6.3 How to change the uplink interval? ==
1678
1679
1680 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1681
1682
1683 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1684
1685
1686 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1687
1688 [[image:1655802313617-381.png||_mstalt="293917"]]
1689
1690
1691 (((
1692 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1693 )))
1694
1695
1696 Input password and ATZ to activate LHT65N,As shown below:
1697
1698 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1699
1700
1701 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1702
1703
1704 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1705
1706
1707 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1708
1709 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1710
1711
1712
1713 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1714
1715 First connect the four lines;(% style="display:none" %)
1716
1717 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1718
1719
1720 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1721
1722 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1723
1724
1725
1726 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1727
1728 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1729
1730
1731 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1732
1733
1734 When this interface appears, it indicates that the download has been completed.
1735
1736 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1737
1738
1739 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1740
1741
1742 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1743
1744
1745 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1746
1747
1748 **UART Port of LHT65N:**
1749
1750 * (% class="mark" %)**PB0: RXD**
1751 * (% class="mark" %)**PB1: TXD**
1752 * (% class="mark" %)**GND**
1753
1754 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1755
1756
1757 (((
1758 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1759 )))
1760
1761
1762 Input password and ATZ to activate LHT65N,As shown below:
1763
1764 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1765
1766
1767 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1768
1769
1770 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1771
1772
1773 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1774
1775 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1776
1777
1778
1779 (% _mstmutation="1" style="color:blue" %)**Step2**(%%):wiring method.(% style="display:none" %)
1780
1781 First connect the four lines;
1782
1783 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1784
1785 Connect A8 and GND with Dupont wire for a while and then separate,enter reset mode
1786
1787
1788
1789 (% style="color:blue" %)**Step3:**(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1790
1791 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1792
1793
1794 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1795
1796
1797 When this interface appears, it indicates that the download has been completed.
1798
1799 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1800
1801
1802 Finally,Disconnect 3.3v,Connect A8 and GND with Dupont wire for a while and then separate,exit reset mode
1803
1804
1805 == 6.8 Why can't I see the datalog information ==
1806
1807
1808 ~1. The time is not aligned, and the correct query command is not used.
1809
1810 2. Decoder error, did not parse the datalog data, the data was filtered.
1811
1812
1813 = 7. Order Info =
1814
1815
1816 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1817
1818 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1819
1820 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1821 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1822 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1823 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1824 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1825 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1826 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1827 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1828
1829 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1830
1831 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1832
1833 = 8. Packing Info =
1834
1835
1836 **Package Includes**:
1837
1838 * LHT65N Temperature & Humidity Sensor x 1
1839 * Optional external sensor
1840
1841 **Dimension and weight**:
1842
1843 * Device Size:  10 x 10 x 3.5 mm
1844 * Device Weight: 120.5g
1845
1846 = 9. Reference material =
1847
1848
1849 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1850
1851 = 10. FCC Warning =
1852
1853
1854 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1855
1856 (1) This device may not cause harmful interference;
1857
1858 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0