Show last authors
1 {{box cssClass="floatinginfobox" title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 (% class="wikigeneratedid" %)
6 = =
7
8 (% class="wikigeneratedid" %)
9 = 1.Introduction =
10
11 == 1.1 Overview ==
12
13 [[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
14
15
16 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
17
18 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
19
20 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
21
22 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
23
24 LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
25
26 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
27
28
29 == Features: ==
30
31 * Wall mountable
32 * LoRaWAN v1.0.3 Class A protocol
33 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
34 * AT Commands to change parameters
35 * Remote configure parameters via LoRaWAN Downlink
36 * Firmware upgradeable via program port
37 * Built-in 2400mAh battery for up to 10 years of use.
38 * Built-in Temperature & Humidity sensor
39 * Optional External Sensors
40 * Tri-color LED to indicate working status
41 * Datalog feature
42
43 == Specification: ==
44
45 **Built-in Temperature Sensor:**
46
47 * Resolution: 0.01 °C
48 * Accuracy Tolerance : Typ ±0.3 °C
49 * Long Term Drift: < 0.02 °C/yr
50 * Operating Range: -40 ~~ 85 °C
51
52 **Built-in Humidity Sensor:**
53
54 * Resolution: 0.04 %RH
55 * Accuracy Tolerance : Typ ±3 %RH
56 * Long Term Drift: < 0.02 °C/yr
57 * Operating Range: 0 ~~ 96 %RH
58
59 **External Temperature Sensor:**
60
61 * Resolution: 0.0625 °C
62 * ±0.5°C accuracy from -10°C to +85°C
63 * ±2°C accuracy from -55°C to +125°C
64 * Operating Range: -55 °C ~~ 125 °C
65
66 = Connect LHT65N to IoT Server =
67
68 == How does LHT65N work? ==
69
70 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
71
72 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
73
74
75 == How to Activate LHT65N? ==
76
77 The LHT65N has two working modes:
78
79 * **Deep Sleep Mode**: LHT65N doesn’t have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
80 * **Working Mode**: In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65 will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
81
82 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
83
84 [[image:image-20220515123819-1.png||height="379" width="317"]]
85
86 |**Behavior on ACT**|**Function**|**Action**
87 |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
88 |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
89 |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
90
91 == Example to join LoRaWAN network ==
92
93 (% class="wikigeneratedid" %)
94 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
95
96 (% class="wikigeneratedid" %)
97 [[image:image-20220522232442-1.png||height="387" width="648"]]
98
99 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
100
101
102 === **Step 1**: Create Device n TTN ===
103
104 Create a device in TTN V3 with the OTAA keys from LHT65N.
105
106 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
107
108 [[image:image-20220522232812-2.png||height="219" width="279"]]
109
110 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
111
112 Add APP EUI in the application.
113
114 [[image:image-20220522232916-3.png]]
115
116
117 [[image:image-20220522232932-4.png]]
118
119
120 [[image:image-20220522232954-5.png]]
121
122 Note: LHT65N use same payload as LHT65.
123
124 [[image:image-20220522233026-6.png]]
125
126
127 Input APP EUI,  APP KEY and DEV EUI:
128
129 [[image:image-20220522233118-7.png]]
130
131
132 === Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
133
134 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
135
136 [[image:image-20220522233300-8.png]]
137
138
139 == Uplink Payload: ==
140
141 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
142
143 After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
144
145
146 (% style="width:572px" %)
147 |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
148 |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
149 [[Built-In>>path:#SHT20_Temperature]]
150
151 [[Temperature>>path:#SHT20_Temperature]]
152 )))|(% style="width:103px" %)(((
153 [[Built-in>>path:#SHT20_Humidity]]
154
155 [[Humidity>>path:#SHT20_Humidity]]
156 )))|(% style="width:72px" %)[[Ext>>path:#Extension_Sensor]] #|(% style="width:89px" %)[[Ext value>>path:#Extension_sensor_value]]
157
158 * The First 6 bytes: has fix meanings for every LHT65N.
159 * The 7th byte (EXT #): defines the external sensor model.
160 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
161
162 === Decoder in TTN V3 ===
163
164 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
165
166 Below is the position to put the decoder and LHT65N decoder can be download from here:
167
168 [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0 >>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
169
170 [[image:image-20220522234118-10.png]]
171
172
173 === BAT-Battery Info ===
174
175 These two bytes of BAT include the battery state and the actually voltage
176
177 (% style="width:646px" %)
178 |Bit(bit)|(% style="width:272px" %)[15:14]|(% style="width:214px" %)[13:0]
179 |Value|(% style="width:272px" %)(((
180 BAT Status
181
182 00(b): Ultra Low ( BAT <= 2.50v)
183
184 01(b): Low  (2.50v <=BAT <= 2.55v)
185
186 10(b): OK   (2.55v <= BAT <=2.65v)
187
188 11(b): Good   (BAT >= 2.65v)
189 )))|(% style="width:214px" %)Actually BAT voltage
190
191 [[image:image-20220522235639-1.png]]
192
193 Check the battery voltage for LHT65N.
194
195 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
196 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
197
198 === Built-in Temperature ===
199
200 [[image:image-20220522235639-2.png]]
201
202 * Temperature:  0x0ABB/100=27.47℃
203
204 [[image:image-20220522235639-3.png]]
205
206 * Temperature:  (0xF5C6-65536)/100=-26.18℃
207
208 === Built-in Humidity ===
209
210 [[image:image-20220522235639-4.png]]
211
212 * Humidity:    0x025C/10=60.4%
213
214 === Ext # ===
215
216 Bytes for External Sensor:
217
218 (% style="width:624px" %)
219 |(% style="width:139px" %)**EXT # Value**|(% style="width:484px" %)**External Sensor Type**
220 |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
221 |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
222
223 === Ext value ===
224
225 ==== Ext~=1, E3 Temperature Sensor ====
226
227 [[image:image-20220522235639-5.png]]
228
229
230 * DS18B20 temp=0x0ADD/100=27.81℃
231
232 The last 2 bytes of data are meaningless
233
234
235
236 [[image:image-20220522235639-6.png]]
237
238 * External temperature= (0xF54F-65536)/100=-27.37℃
239
240 The last 2 bytes of data are meaningless
241
242
243 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
244
245
246 ==== Ext~=9, E3 sensor with Unix Timestamp ====
247
248 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
249
250
251 (% style="width:697px" %)
252 |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
253 |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
254 [[Built-In>>path:#SHT20_Temperature]]
255
256 [[Temperature>>path:#SHT20_Temperature]]
257 )))|(% style="width:106px" %)(((
258 [[BAT Status &>>path:#BAT_Humidity]]
259
260 [[Built-in>>path:#BAT_Humidity]]
261
262 [[Humidity>>path:#BAT_Humidity]]
263 )))|(% style="width:108px" %)[[Status & Ext>>path:#Status_EXT]]|(% style="width:116px" %)(((
264 [[Unix>>path:#Unix_Time_Stamp]]
265
266 [[Time Stamp>>path:#Unix_Time_Stamp]]
267 )))
268
269 * **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
270
271 (% style="width:587px" %)
272 |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
273 |Value|(% style="width:280px" %)(((
274 BAT Status
275
276 00(b): Ultra Low ( BAT <= 2.50v)
277
278 01(b): Low  (2.50v <=BAT <= 2.55v)
279
280 10(b): OK   (2.55v <= BAT <=2.65v)
281
282 11(b): Good   (BAT >= 2.65v)
283 )))|(% style="width:136px" %)(((
284 [[Built-in Humidity>>path:#SHT20_Humidity]]
285
286
287 )))
288
289 * **Status & Ext Byte**
290
291 (% style="width:732px" %)
292 |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
293 |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
294 Ext:
295
296 0b(1001)
297 )))
298
299 * Poll Message Flag: 1: This message is a poll message reply, 0: means this is a normal uplink.
300 * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
301 * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
302
303 == Show data on Datacake ==
304
305 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
306
307
308 **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
309
310 **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
311
312
313 Add Datacake:
314
315 [[image:image-20220523000825-7.png||height="262" width="583"]]
316
317
318 Select default key as Access Key:
319
320 [[image:image-20220523000825-8.png||height="453" width="406"]]
321
322
323 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
324
325 [[image:image-20220523000825-9.png||height="366" width="392"]]
326
327
328
329 [[image:image-20220523000825-10.png||height="432" width="762"]]
330
331
332 == Datalog Feature ==
333
334 This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
335
336 === Unix TimeStamp ===
337
338 LHT65N uses Unix TimeStamp format based on
339
340 [[image:image-20220523001219-11.png||height="97" width="627"]]
341
342
343 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
344
345 Below is the converter example
346
347 [[image:image-20220523001219-12.png||height="353" width="853"]]
348
349 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
350
351
352 === Set Device Time ===
353
354 There are two ways to set device’s time:
355
356 **~1. Through LoRaWAN MAC Command (Default settings)**
357
358 User need to set SYNCMOD=1 to enable sync time via MAC command.
359
360 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
361
362 Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn’t support. If server doesn’t support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.
363
364
365 **2. Manually Set Time**
366
367 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
368
369
370 === Poll sensor value ===
371
372 User can poll sensor value based on timestamps from the server. Below is the downlink command.
373
374
375 (% style="width:454px" %)
376 |(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
377 |(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
378
379 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
380
381
382 For example, downlink command 31 5FC5F350 5FC6 0160 05
383
384 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
385
386 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
387
388
389 === Datalog Uplink payload ===
390
391 The Datalog poll reply uplink will use below payload format.
392
393
394 Retrieval data payload
395
396 |**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
397 |**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
398 [[Built-In>>path:#SHT20_Temperature]]
399
400 [[Temperature>>path:#SHT20_Temperature]]
401 )))|(((
402 [[Built-in>>path:#SHT20_Humidity]]
403
404 [[Humidity>>path:#SHT20_Humidity]]
405 )))|[[Poll message flag & Ext>>path:#Poll_EXT]]|(((
406 [[Unix Time Stamp>>path:#Unix_Time_Stamp]]
407
408
409 )))
410
411 Poll message flag & Ext
412
413
414 |**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
415 |**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
416 Ext:
417
418 0b(1001)
419 )))
420
421 Poll Message Flag: 1: This message is a poll message reply.
422
423 * Poll Message Flag is set to 1.
424 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
425
426 For example, in US915 band, the max payload for different DR is:
427
428 a)      DR0: max is 11 bytes so one entry of data
429
430 b)      DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
431
432 c)      DR2: total payload includes 11 entries of data
433
434 d)      DR3: total payload includes 22 entries of data.
435
436 If devise doesn’t have any data in the polling time. Device will uplink 11 bytes of 0   
437
438
439 **Example:**
440
441 If LHT65N has below data inside Flash:
442
443 Flash Addr   |Unix Time | Ext | BAT voltage|  Value                  
444
445 80196E0 21/1/19 04:27:03 1 3145 sht_temp=22.00 sht_hum=32.6 ds_temp=327.67
446
447 80196F0 21/1/19 04:28:57 1 3145 sht_temp=21.90 sht_hum=33.1 ds_temp=327.67
448
449 8019700 21/1/19 04:30:30 1 3145 sht_temp=21.81 sht_hum=33.4 ds_temp=327.67
450
451 8019710 21/1/19 04:40:30 1 3145 sht_temp=21.65 sht_hum=33.7 ds_temp=327.67
452
453 8019720 21/1/19 04:50:30 1 3147 sht_temp=21.55 sht_hum=34.1 ds_temp=327.67
454
455 8019730 21/1/19 05:00:30 1 3149 sht_temp=21.50 sht_hum=34.1 ds_temp=327.67
456
457 8019740 21/1/19 05:10:30 1 3149 sht_temp=21.43 sht_hum=34.6 ds_temp=327.67
458
459 8019750 21/1/19 05:20:30 1 3151 sht_temp=21.35 sht_hum=34.9 ds_temp=327.67
460
461
462 If user sends below downlink command:
463
464 3160065F9760066DA705
465
466 Where : Start time: 60065F97 = time 21/1/19 04:27:03
467
468 Stop time 60066DA7= time 21/1/19 05:27:03
469
470
471 LHT65N will uplink this payload.
472
473 [[image:image-20220523001219-13.png]]
474
475 7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
476
477 Where the first 11 bytes is for the first entry:
478
479 7FFF089801464160065F97
480
481 Ext sensor data=0x7FFF/100=327.67
482
483 Temp=0x0898/100=22.00
484
485 Hum=0x0146/10=32.6
486
487 poll message flag & Ext=0x41,means reply data,Ext=1
488
489 Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
490
491
492 == Alarm Mode ==
493
494 Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
495
496
497 Note: Alarm mode will increase a little big the power consumption, we recommend extending the normal reading time when enabling this feature.
498
499
500 AT Commands for Alarm mode:
501
502 **AT+WMOD=1**: Enable/Disable Alarm Mode. (0:Disable, 1: Enable)
503
504 **AT+CITEMP=1**: The interval to check the temperature for Alarm. (Unit: minute)
505
506
507
508 == LED Indicator ==
509
510 The LHT65N has a triple color LED which for easy shows different stage.
511
512 While pressing ACT button, the LED will work as per LED status with ACT button.
513
514 In a normal working state:
515
516 * For each uplink, the BLUE LED or RED LED will blink once.
517 * BLUE LED when an external sensor is connected
518 * RED LED when an external sensor is not connected
519 * For each success downlink, the PURPLE LED will blink once
520
521 ----
522
523 == Installation ==
524
525 [[image:image-20220516231650-1.png||height="436" width="428"]]
526
527
528
529
530 = Sensors & Accessories =
531
532 == E3 Temperature Probe ==
533
534 [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
535
536
537 With Temperature sensor with 2 meters cable long
538
539 * Resolution: 0.0625 °C
540 * ±0.5°C accuracy from -10°C to +85°C
541 * ±2°C accuracy from -55°C to +125°C
542 * Operating Range: -40 ~~ 125 °C
543 * -55°C to 125°C
544 * Working voltage 2.35v ~~ 5v
545
546 = Configure LHT65N via AT Command or LoRaWAN Downlink =
547
548 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
549
550 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
551 * LoRaWAN Downlink instruction for different platforms:
552
553 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
554
555
556 There are two kinds of commands to configure LHT65N, they are:
557
558 * **General Commands**.
559
560 These commands are to configure:
561
562 * General system settings like: uplink interval.
563 * LoRaWAN protocol & radio-related commands.
564
565 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki:
566
567 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
568
569
570
571 * **Commands special design for LHT65N**
572
573 These commands are only valid for LHT65N, as below:
574
575
576 == Set Transmit Interval Time ==
577
578 Feature: Change LoRaWAN End Node Transmit Interval.
579
580 **AT Command: AT+TDC**
581
582 |**Command Example**|**Function**|**Response**
583 |AT+TDC?|Show current transmit Interval|(((
584 30000
585
586 OK
587
588 the interval is 30000ms = 30s
589 )))
590 |AT+TDC=60000|Set Transmit Interval|(((
591 OK
592
593 Set transmit interval to 60000ms = 60 seconds
594 )))
595
596 **Downlink Command: 0x01**
597
598 Format: Command Code (0x01) followed by 3 bytes time value.
599
600 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
601
602 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
603 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
604
605 == Set External Sensor Mode ==
606
607 Feature: Change External Sensor Mode.
608
609 **AT Command: AT+EXT**
610
611 |**Command Example**|**Function**|**Response**
612 |AT+EXT?|Get current external sensor mode|(((
613 1
614
615 OK
616
617 External Sensor mode =1
618 )))
619 |AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1
620 |AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp
621
622 **Downlink Command: 0xA2**
623
624 Total bytes: 2 ~~ 5 bytes
625
626 Example:
627
628 * 0xA201: Set external sensor type to E1
629 * 0xA209: Same as AT+EXT=9
630 * 0xA20702003c,Same as AT+SETCNT=60
631
632 == Enable/Disable uplink Temperature probe ID ==
633
634 Feature: If PID is enabled, device will send the temperature probe ID on:
635
636 * First Packet after OTAA Join
637 * Every 24 hours since the first packet.
638
639 PID is default set to disable (0)
640
641
642 **AT Command:**
643
644 |**Command Example**|**Function**|**Response**
645 |AT+PID=1|Enable PID uplink|OK
646
647 **Downlink Command:**
648
649 * 0xA800     à AT+PID=0
650 * 0xA801     à AT+PID=1
651
652
653 == Set Password ==
654
655 Feature: Set device password, max 9 digits
656
657 **AT Command: AT+PWORD**
658
659 |**Command Example**|**Function**|**Response**
660 |AT+PWORD=?|Show password|(((
661 123456
662
663
664 OK
665 )))
666 |AT+PWORD=999999|Set password|OK
667
668 **Downlink Command:**
669
670 No downlink command for this feature.
671
672
673 == Quit AT Command ==
674
675 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
676
677 **AT Command: AT+DISAT**
678
679 |**Command Example**|**Function**|**Response**
680 |AT+DISAT|Quit AT Commands mode|OK
681
682 **Downlink Command:**
683
684 No downlink command for this feature.
685
686
687 == Set to sleep mode ==
688
689 Feature: Set device to sleep mode
690
691 **AT Command: AT+SLEEP**
692
693 | | |
694 |**Command Example**|**Function**|**Response**
695 |AT+SLEEP|Set to sleep mode|(((
696 Clear all stored sensor data…
697
698 OK
699 )))
700
701 **Downlink Command:**
702
703 * There is no downlink command to set to Sleep mode.
704
705
706 == Set system time ==
707
708 Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
709
710 **AT Command:**
711
712 |**Command Example**|**Function**
713 |AT+TIMESTAMP=1611104352|(((
714 OK
715
716 Set System time to 2021-01-20 00:59:12
717 )))
718
719 **Downlink Command:**
720
721 0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
722
723
724 == Set Time Sync Mode ==
725
726 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
727
728
729 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
730
731
732 **AT Command:**
733
734 |**Command Example**|**Function**
735 |AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
736
737 **Downlink Command:**
738
739 0x28 01 ~/~/ Same As AT+SYNCMOD=1
740
741 0x28 00 ~/~/ Same As AT+SYNCMOD=0
742
743
744 == Set Time Sync Interval ==
745
746 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
747
748 **AT Command:**
749
750 |**Command Example**|**Function**
751 |AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
752
753 **Downlink Command:**
754
755 0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
756
757
758 == Print data entries base on page. ==
759
760 Feature: Print the sector data from start page to stop page (max is 416 pages).
761
762 **AT Command: AT+PDTA**
763
764 |**Command Example**|**Response**
765 |(((
766 AT+PDTA=1,3
767
768
769
770 Print page 1 to 3
771 )))|(((
772 8019500 19/6/26 16:48 1 2992 sht_temp=28.21 sht_hum=71.5 ds_temp=27.31
773
774 8019510 19/6/26 16:53 1 2994 sht_temp=27.64 sht_hum=69.3 ds_temp=26.93
775
776 8019520 19/6/26 16:58 1 2996 sht_temp=28.39 sht_hum=72.0 ds_temp=27.06
777
778 8019530 19/6/26 17:03 1 2996 sht_temp=27.97 sht_hum=70.4 ds_temp=27.12
779
780 8019540 19/6/26 17:08 1 2996 sht_temp=27.80 sht_hum=72.9 ds_temp=27.06
781
782 8019550 19/6/26 17:13 1 2998 sht_temp=27.30 sht_hum=72.4 ds_temp=26.68
783
784 8019560 19/6/26 17:22 1 2992 sht_temp=26.27 sht_hum=62.3 ds_temp=26.56
785
786 8019570
787
788 8019580
789
790 8019590
791
792 80195A0
793
794 80195B0
795
796 80195C0
797
798 80195D0
799
800 80195E0
801
802 80195F0
803
804
805 OK
806 )))
807
808 **Downlink Command:**
809
810 No downlink commands for feature
811
812
813
814 == Print last few data entries. ==
815
816 Feature: Print the last few data entries
817
818 **AT Command: AT+PLDTA**
819
820 |**Command Example**|**Response**
821 |(((
822 AT+PLDTA=5
823
824
825
826 Print last 5 entries
827 )))|(((
828 Stop Tx and RTP events when read sensor data
829
830 1 19/6/26 13:59 1 3005 sht_temp=27.09 sht_hum=79.5 ds_temp=26.75
831
832 2 19/6/26 14:04 1 3007 sht_temp=26.65 sht_hum=74.8 ds_temp=26.43
833
834 3 19/6/26 14:09 1 3007 sht_temp=26.91 sht_hum=77.9 ds_temp=26.56
835
836 4 19/6/26 14:15 1 3007 sht_temp=26.93 sht_hum=76.7 ds_temp=26.75
837
838 5 19/6/26 14:20 1 3007 sht_temp=26.78 sht_hum=76.6 ds_temp=26.43
839
840 Start Tx and RTP events
841
842 OK
843 )))
844
845 **Downlink Command:**
846
847 No downlink commands for feature
848
849
850
851 == Clear Flash Record ==
852
853 Feature: Clear flash storage for data log feature.
854
855 **AT Command: AT+CLRDTA**
856
857 |**Command Example**|**Function**|**Response**
858 |AT+CLRDTA|Clear date record|(((
859 Clear all stored sensor data…
860
861 OK
862 )))
863
864 **Downlink Command: 0xA3**
865
866 * Example: 0xA301 ~/~/Same as AT+CLRDTA
867
868
869
870 = Battery & How to replace =
871
872 == Battery Type ==
873
874 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
875
876 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
877 [[image:image-20220515075034-1.png||height="208" width="644"]]
878
879
880 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
881
882
883 == Replace Battery ==
884
885 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
886
887 [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
888
889
890 == Battery Life Analyze ==
891
892 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
893 https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
894
895
896 = Order Info =
897
898 Part Number: (% class="mark" %)**LHT65N-XX**
899
900 **XX**: The default frequency band
901
902 * **AS923**: LoRaWAN AS923 band
903 * **AU915**: LoRaWAN AU915 band
904 * **EU433**: LoRaWAN EU433 band
905 * **EU868**: LoRaWAN EU868 band
906 * **KR920**: LoRaWAN KR920 band
907 * **US915**: LoRaWAN US915 band
908 * **IN865**: LoRaWAN IN865 band
909 * **CN470**: LoRaWAN CN470 band
910
911 **YY**: Sensor Accessories
912
913 * **E3**: External Temperature Probe
914
915 = Packing Info =
916
917 **Package Includes**:
918
919 * LHT65N Temperature & Humidity Sensor x 1
920 * Program cable x 1
921 * Optional external sensor
922
923 **Dimension and weight**:
924
925 * Device Size:  13.5 x 7 x 3 cm
926 * Device Weight: 105g
927 * Package Size / pcs : 14.5 x 8 x 5 cm
928 * Weight / pcs : 170g
929
930 = FCC Warning =
931
932 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
933
934 (1) This device may not cause harmful interference, and
935
936 (2) this device must accept any interference received, including interference that may cause undesired operation
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0