Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) ***** (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654826306458-414.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra-low power consumption
49 * Laser technology for distance detection
50 * Operating Range - 0.1m~~12m①
51 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
52 * Monitor Battery Level
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * 8500mAh Battery for long term use
58
59 == 1.3  Probe Specification ==
60
61 * Storage temperature :-20℃~~75℃
62 * Operating temperature - -20℃~~60℃
63 * Operating Range - 0.1m~~12m①
64 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
65 * Distance resolution - 5mm
66 * Ambient light immunity - 70klux
67 * Enclosure rating - IP65
68 * Light source - LED
69 * Central wavelength - 850nm
70 * FOV - 3.6°
71 * Material of enclosure - ABS+PC
72 * Wire length - 25cm
73
74 == 1.4  Probe Dimension ==
75
76
77 [[image:1654827224480-952.png]]
78
79
80 == 1.5 ​ Applications ==
81
82 * Horizontal distance measurement
83 * Parking management system
84 * Object proximity and presence detection
85 * Intelligent trash can management system
86 * Robot obstacle avoidance
87 * Automatic control
88 * Sewer
89
90 == 1.6  Pin mapping and power on ==
91
92
93 [[image:1654827332142-133.png]]
94
95
96 = 2.  Configure LLDS12 to connect to LoRaWAN network =
97
98 == 2.1  How it works ==
99
100 (((
101 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
102 )))
103
104 (((
105 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
106 )))
107
108
109 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
110
111 (((
112 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
113 )))
114
115 (((
116 [[image:1654827857527-556.png]]
117 )))
118
119 (((
120 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
121 )))
122
123 (((
124 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
125 )))
126
127 (((
128 Each LSPH01 is shipped with a sticker with the default device EUI as below:
129 )))
130
131 [[image:image-20220607170145-1.jpeg]]
132
133
134
135 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
136
137
138 **Register the device**
139
140
141 [[image:1654592600093-601.png]]
142
143
144
145 **Add APP EUI and DEV EUI**
146
147 [[image:1654592619856-881.png]]
148
149
150
151 **Add APP EUI in the application**
152
153 [[image:1654592632656-512.png]]
154
155
156
157 **Add APP KEY**
158
159 [[image:1654592653453-934.png]]
160
161
162 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
163
164
165 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
166
167 [[image:image-20220607170442-2.png]]
168
169
170 (((
171 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
172 )))
173
174 [[image:1654833501679-968.png]]
175
176
177
178 == 2.3  ​Uplink Payload ==
179
180 (((
181 LLDS12 will uplink payload via LoRaWAN with below payload format: 
182 )))
183
184 (((
185 Uplink payload includes in total 11 bytes.
186 )))
187
188 (((
189
190 )))
191
192 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
193 |=(% style="width: 62.5px;" %)(((
194 **Size (bytes)**
195 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
196 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
197 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
198 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
199 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
200 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
201 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
202 )))
203
204 [[image:1654833689380-972.png]]
205
206
207
208 === 2.3.1  Battery Info ===
209
210
211 Check the battery voltage for LLDS12.
212
213 Ex1: 0x0B45 = 2885mV
214
215 Ex2: 0x0B49 = 2889mV
216
217
218
219 === 2.3.2  DS18B20 Temperature sensor ===
220
221 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
222
223
224 **Example**:
225
226 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
227
228 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
229
230
231
232 === 2.3.3  Distance ===
233
234 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
235
236
237 **Example**:
238
239 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
240
241
242
243 === 2.3.4  Distance signal strength ===
244
245 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
246
247
248 **Example**:
249
250 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
251
252 Customers can judge whether they need to adjust the environment based on the signal strength.
253
254
255
256 === 2.3.5  Interrupt Pin ===
257
258 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
259
260 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
261
262 **Example:**
263
264 0x00: Normal uplink packet.
265
266 0x01: Interrupt Uplink Packet.
267
268
269
270 === 2.3.6  LiDAR temp ===
271
272 Characterize the internal temperature value of the sensor.
273
274 **Example: **
275 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
276 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
277
278
279
280 === 2.3.7  Message Type ===
281
282 (((
283 For a normal uplink payload, the message type is always 0x01.
284 )))
285
286 (((
287 Valid Message Type:
288 )))
289
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
292 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
293 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
294 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
295
296 === 2.3.8  Decode payload in The Things Network ===
297
298 While using TTN network, you can add the payload format to decode the payload.
299
300
301 [[image:1654592762713-715.png]]
302
303 (((
304 The payload decoder function for TTN is here:
305 )))
306
307 (((
308 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
309 )))
310
311
312
313 == 2.4  Uplink Interval ==
314
315 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
316
317
318
319 == 2.5  ​Show Data in DataCake IoT Server ==
320
321 (((
322 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
323 )))
324
325 (((
326
327 )))
328
329 (((
330 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
331 )))
332
333 (((
334 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
335 )))
336
337
338 [[image:1654592790040-760.png]]
339
340
341 [[image:1654592800389-571.png]]
342
343
344 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
345
346 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
347
348 [[image:1654832691989-514.png]]
349
350
351 [[image:1654592833877-762.png]]
352
353
354 [[image:1654832740634-933.png]]
355
356
357
358 (((
359 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
360 )))
361
362 (((
363
364 )))
365
366 [[image:1654833065139-942.png]]
367
368
369
370 [[image:1654833092678-390.png]]
371
372
373
374 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
375
376 [[image:1654833163048-332.png]]
377
378
379
380 == 2.6  Frequency Plans ==
381
382 (((
383 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
384 )))
385
386
387 === 2.6.1  EU863-870 (EU868) ===
388
389 (((
390 (% style="color:blue" %)**Uplink:**
391 )))
392
393 (((
394 868.1 - SF7BW125 to SF12BW125
395 )))
396
397 (((
398 868.3 - SF7BW125 to SF12BW125 and SF7BW250
399 )))
400
401 (((
402 868.5 - SF7BW125 to SF12BW125
403 )))
404
405 (((
406 867.1 - SF7BW125 to SF12BW125
407 )))
408
409 (((
410 867.3 - SF7BW125 to SF12BW125
411 )))
412
413 (((
414 867.5 - SF7BW125 to SF12BW125
415 )))
416
417 (((
418 867.7 - SF7BW125 to SF12BW125
419 )))
420
421 (((
422 867.9 - SF7BW125 to SF12BW125
423 )))
424
425 (((
426 868.8 - FSK
427 )))
428
429 (((
430
431 )))
432
433 (((
434 (% style="color:blue" %)**Downlink:**
435 )))
436
437 (((
438 Uplink channels 1-9 (RX1)
439 )))
440
441 (((
442 869.525 - SF9BW125 (RX2 downlink only)
443 )))
444
445
446
447 === 2.6.2  US902-928(US915) ===
448
449 (((
450 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
451 )))
452
453 (((
454 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
455 )))
456
457 (((
458 After Join success, the end node will switch to the correct sub band by:
459 )))
460
461 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
462 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
463
464 === 2.6.3  CN470-510 (CN470) ===
465
466 (((
467 Used in China, Default use CHE=1
468 )))
469
470 (((
471 (% style="color:blue" %)**Uplink:**
472 )))
473
474 (((
475 486.3 - SF7BW125 to SF12BW125
476 )))
477
478 (((
479 486.5 - SF7BW125 to SF12BW125
480 )))
481
482 (((
483 486.7 - SF7BW125 to SF12BW125
484 )))
485
486 (((
487 486.9 - SF7BW125 to SF12BW125
488 )))
489
490 (((
491 487.1 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 487.3 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 487.5 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 487.7 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507
508 )))
509
510 (((
511 (% style="color:blue" %)**Downlink:**
512 )))
513
514 (((
515 506.7 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519 506.9 - SF7BW125 to SF12BW125
520 )))
521
522 (((
523 507.1 - SF7BW125 to SF12BW125
524 )))
525
526 (((
527 507.3 - SF7BW125 to SF12BW125
528 )))
529
530 (((
531 507.5 - SF7BW125 to SF12BW125
532 )))
533
534 (((
535 507.7 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 507.9 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 508.1 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 505.3 - SF12BW125 (RX2 downlink only)
548 )))
549
550
551
552
553 === 2.6.4  AU915-928(AU915) ===
554
555 (((
556 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
557 )))
558
559 (((
560 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
561 )))
562
563 (((
564
565 )))
566
567 (((
568 After Join success, the end node will switch to the correct sub band by:
569 )))
570
571 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
572 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
573
574 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
575
576 (((
577 (% style="color:blue" %)**Default Uplink channel:**
578 )))
579
580 (((
581 923.2 - SF7BW125 to SF10BW125
582 )))
583
584 (((
585 923.4 - SF7BW125 to SF10BW125
586 )))
587
588 (((
589
590 )))
591
592 (((
593 (% style="color:blue" %)**Additional Uplink Channel**:
594 )))
595
596 (((
597 (OTAA mode, channel added by JoinAccept message)
598 )))
599
600 (((
601
602 )))
603
604 (((
605 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
606 )))
607
608 (((
609 922.2 - SF7BW125 to SF10BW125
610 )))
611
612 (((
613 922.4 - SF7BW125 to SF10BW125
614 )))
615
616 (((
617 922.6 - SF7BW125 to SF10BW125
618 )))
619
620 (((
621 922.8 - SF7BW125 to SF10BW125
622 )))
623
624 (((
625 923.0 - SF7BW125 to SF10BW125
626 )))
627
628 (((
629 922.0 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633
634 )))
635
636 (((
637 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
638 )))
639
640 (((
641 923.6 - SF7BW125 to SF10BW125
642 )))
643
644 (((
645 923.8 - SF7BW125 to SF10BW125
646 )))
647
648 (((
649 924.0 - SF7BW125 to SF10BW125
650 )))
651
652 (((
653 924.2 - SF7BW125 to SF10BW125
654 )))
655
656 (((
657 924.4 - SF7BW125 to SF10BW125
658 )))
659
660 (((
661 924.6 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665
666 )))
667
668 (((
669 (% style="color:blue" %)**Downlink:**
670 )))
671
672 (((
673 Uplink channels 1-8 (RX1)
674 )))
675
676 (((
677 923.2 - SF10BW125 (RX2)
678 )))
679
680
681
682
683 === 2.6.6  KR920-923 (KR920) ===
684
685 (((
686 (% style="color:blue" %)**Default channel:**
687 )))
688
689 (((
690 922.1 - SF7BW125 to SF12BW125
691 )))
692
693 (((
694 922.3 - SF7BW125 to SF12BW125
695 )))
696
697 (((
698 922.5 - SF7BW125 to SF12BW125
699 )))
700
701 (((
702
703 )))
704
705 (((
706 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
707 )))
708
709 (((
710 922.1 - SF7BW125 to SF12BW125
711 )))
712
713 (((
714 922.3 - SF7BW125 to SF12BW125
715 )))
716
717 (((
718 922.5 - SF7BW125 to SF12BW125
719 )))
720
721 (((
722 922.7 - SF7BW125 to SF12BW125
723 )))
724
725 (((
726 922.9 - SF7BW125 to SF12BW125
727 )))
728
729 (((
730 923.1 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 923.3 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738
739 )))
740
741 (((
742 (% style="color:blue" %)**Downlink:**
743 )))
744
745 (((
746 Uplink channels 1-7(RX1)
747 )))
748
749 (((
750 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
751 )))
752
753
754
755
756 === 2.6.7  IN865-867 (IN865) ===
757
758 (((
759 (% style="color:blue" %)**Uplink:**
760 )))
761
762 (((
763 865.0625 - SF7BW125 to SF12BW125
764 )))
765
766 (((
767 865.4025 - SF7BW125 to SF12BW125
768 )))
769
770 (((
771 865.9850 - SF7BW125 to SF12BW125
772 )))
773
774 (((
775
776 )))
777
778 (((
779 (% style="color:blue" %)**Downlink:**
780 )))
781
782 (((
783 Uplink channels 1-3 (RX1)
784 )))
785
786 (((
787 866.550 - SF10BW125 (RX2)
788 )))
789
790
791
792
793 == 2.7  LED Indicator ==
794
795 The LLDS12 has an internal LED which is to show the status of different state.
796
797 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
798 * Blink once when device transmit a packet.
799
800 == 2.8  ​Firmware Change Log ==
801
802
803 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
804
805
806 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
807
808
809
810 = 3.  LiDAR ToF Measurement =
811
812 == 3.1 Principle of Distance Measurement ==
813
814 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
815
816 [[image:1654831757579-263.png]]
817
818
819
820 == 3.2 Distance Measurement Characteristics ==
821
822 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
823
824 [[image:1654831774373-275.png]]
825
826
827 (((
828 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
829 )))
830
831 (((
832 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
833 )))
834
835 (((
836 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
837 )))
838
839
840 (((
841 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
842 )))
843
844
845 [[image:1654831797521-720.png]]
846
847
848 (((
849 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
850 )))
851
852 [[image:1654831810009-716.png]]
853
854
855 (((
856 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
857 )))
858
859
860
861 == 3.3 Notice of usage: ==
862
863 Possible invalid /wrong reading for LiDAR ToF tech:
864
865 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
866 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
867 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
868 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
869
870 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
871
872 (((
873 (((
874 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
875 )))
876 )))
877
878 * (((
879 (((
880 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
881 )))
882 )))
883 * (((
884 (((
885 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
886 )))
887 )))
888
889 (((
890 (((
891
892 )))
893
894 (((
895 There are two kinds of commands to configure LLDS12, they are:
896 )))
897 )))
898
899 * (((
900 (((
901 (% style="color:#4f81bd" %)** General Commands**.
902 )))
903 )))
904
905 (((
906 (((
907 These commands are to configure:
908 )))
909 )))
910
911 * (((
912 (((
913 General system settings like: uplink interval.
914 )))
915 )))
916 * (((
917 (((
918 LoRaWAN protocol & radio related command.
919 )))
920 )))
921
922 (((
923 (((
924 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
925 )))
926 )))
927
928 (((
929 (((
930
931 )))
932 )))
933
934 * (((
935 (((
936 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
937 )))
938 )))
939
940 (((
941 (((
942 These commands only valid for LLDS12, as below:
943 )))
944 )))
945
946
947
948 == 4.1  Set Transmit Interval Time ==
949
950 Feature: Change LoRaWAN End Node Transmit Interval.
951
952 (% style="color:#037691" %)**AT Command: AT+TDC**
953
954 [[image:image-20220607171554-8.png]]
955
956
957 (((
958 (% style="color:#037691" %)**Downlink Command: 0x01**
959 )))
960
961 (((
962 Format: Command Code (0x01) followed by 3 bytes time value.
963 )))
964
965 (((
966 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
967 )))
968
969 * (((
970 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
971 )))
972 * (((
973 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
974 )))
975
976 == 4.2  Set Interrupt Mode ==
977
978 Feature, Set Interrupt mode for GPIO_EXIT.
979
980 (% style="color:#037691" %)**AT Command: AT+INTMOD**
981
982 [[image:image-20220610105806-2.png]]
983
984
985 (((
986 (% style="color:#037691" %)**Downlink Command: 0x06**
987 )))
988
989 (((
990 Format: Command Code (0x06) followed by 3 bytes.
991 )))
992
993 (((
994 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
995 )))
996
997 * (((
998 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
999 )))
1000 * (((
1001 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1002 )))
1003
1004 == 4.3  Get Firmware Version Info ==
1005
1006 Feature: use downlink to get firmware version.
1007
1008 (% style="color:#037691" %)**Downlink Command: 0x26**
1009
1010 [[image:image-20220607171917-10.png]]
1011
1012 * Reply to the confirmation package: 26 01
1013 * Reply to non-confirmed packet: 26 00
1014
1015 Device will send an uplink after got this downlink command. With below payload:
1016
1017 Configures info payload:
1018
1019 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1020 |=(((
1021 **Size(bytes)**
1022 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1023 |**Value**|Software Type|(((
1024 Frequency
1025
1026 Band
1027 )))|Sub-band|(((
1028 Firmware
1029
1030 Version
1031 )))|Sensor Type|Reserve|(((
1032 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1033 Always 0x02
1034 )))
1035
1036 **Software Type**: Always 0x03 for LLDS12
1037
1038
1039 **Frequency Band**:
1040
1041 *0x01: EU868
1042
1043 *0x02: US915
1044
1045 *0x03: IN865
1046
1047 *0x04: AU915
1048
1049 *0x05: KZ865
1050
1051 *0x06: RU864
1052
1053 *0x07: AS923
1054
1055 *0x08: AS923-1
1056
1057 *0x09: AS923-2
1058
1059 *0xa0: AS923-3
1060
1061
1062 **Sub-Band**: value 0x00 ~~ 0x08
1063
1064
1065 **Firmware Version**: 0x0100, Means: v1.0.0 version
1066
1067
1068 **Sensor Type**:
1069
1070 0x01: LSE01
1071
1072 0x02: LDDS75
1073
1074 0x03: LDDS20
1075
1076 0x04: LLMS01
1077
1078 0x05: LSPH01
1079
1080 0x06: LSNPK01
1081
1082 0x07: LLDS12
1083
1084
1085
1086 = 5.  Battery & How to replace =
1087
1088 == 5.1  Battery Type ==
1089
1090 (((
1091 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1092 )))
1093
1094 (((
1095 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1096 )))
1097
1098 [[image:1654593587246-335.png]]
1099
1100
1101 Minimum Working Voltage for the LLDS12:
1102
1103 LLDS12:  2.45v ~~ 3.6v
1104
1105
1106
1107 == 5.2  Replace Battery ==
1108
1109 (((
1110 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1111 )))
1112
1113 (((
1114 And make sure the positive and negative pins match.
1115 )))
1116
1117
1118
1119 == 5.3  Power Consumption Analyze ==
1120
1121 (((
1122 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1123 )))
1124
1125 (((
1126 Instruction to use as below:
1127 )))
1128
1129
1130 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1131
1132 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1133
1134
1135 **Step 2**: Open it and choose
1136
1137 * Product Model
1138 * Uplink Interval
1139 * Working Mode
1140
1141 And the Life expectation in difference case will be shown on the right.
1142
1143 [[image:1654593605679-189.png]]
1144
1145
1146 The battery related documents as below:
1147
1148 * (((
1149 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1150 )))
1151 * (((
1152 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1153 )))
1154 * (((
1155 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1156 )))
1157
1158 [[image:image-20220607172042-11.png]]
1159
1160
1161
1162 === 5.3.1  ​Battery Note ===
1163
1164 (((
1165 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1166 )))
1167
1168
1169
1170 === ​5.3.2  Replace the battery ===
1171
1172 (((
1173 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1174 )))
1175
1176 (((
1177 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1178 )))
1179
1180
1181
1182 = 6.  Use AT Command =
1183
1184 == 6.1  Access AT Commands ==
1185
1186 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1187
1188 [[image:1654593668970-604.png]]
1189
1190 **Connection:**
1191
1192 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1193
1194 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1195
1196 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1197
1198
1199 (((
1200 (((
1201 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1202 )))
1203
1204 (((
1205 LLDS12 will output system info once power on as below:
1206 )))
1207 )))
1208
1209
1210 [[image:1654593712276-618.png]]
1211
1212 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1213
1214
1215 = 7.  FAQ =
1216
1217 == 7.1  How to change the LoRa Frequency Bands/Region ==
1218
1219 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1220 When downloading the images, choose the required image file for download. ​
1221
1222
1223 = 8.  Trouble Shooting =
1224
1225 == 8.1  AT Commands input doesn’t work ==
1226
1227
1228 (((
1229 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1230 )))
1231
1232
1233 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1234
1235
1236 (((
1237 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1238 )))
1239
1240 (((
1241 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1242 )))
1243
1244 (((
1245
1246 )))
1247
1248 (((
1249 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1250 )))
1251
1252 (((
1253 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1254 )))
1255
1256
1257
1258 = 9.  Order Info =
1259
1260
1261 Part Number: (% style="color:blue" %)**LLDS12-XX**
1262
1263
1264 (% style="color:blue" %)**XX**(%%): The default frequency band
1265
1266 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1267 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1268 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1269 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1270 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1271 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1272 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1273 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1274
1275
1276 = 10. ​ Packing Info =
1277
1278
1279 **Package Includes**:
1280
1281 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1282
1283 **Dimension and weight**:
1284
1285 * Device Size: cm
1286 * Device Weight: g
1287 * Package Size / pcs : cm
1288 * Weight / pcs : g
1289
1290
1291 = 11.  ​Support =
1292
1293 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1294 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0