Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16
17 (((
18
19
20 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21
22 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23
24 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25
26 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27
28 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
29
30 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
31 )))
32
33
34 [[image:1654826306458-414.png]]
35
36
37
38 == ​1.2  Features ==
39
40 * LoRaWAN 1.0.3 Class A
41 * Ultra-low power consumption
42 * Laser technology for distance detection
43 * Operating Range - 0.1m~~12m①
44 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 * Monitor Battery Level
46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 * AT Commands to change parameters
48 * Uplink on periodically
49 * Downlink to change configure
50 * 8500mAh Battery for long term use
51
52
53
54 == 1.3  Probe Specification ==
55
56 * Storage temperature :-20℃~~75℃
57 * Operating temperature - -20℃~~60℃
58 * Operating Range - 0.1m~~12m①
59 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
60 * Distance resolution - 5mm
61 * Ambient light immunity - 70klux
62 * Enclosure rating - IP65
63 * Light source - LED
64 * Central wavelength - 850nm
65 * FOV - 3.6°
66 * Material of enclosure - ABS+PC
67 * Wire length - 25cm
68
69
70
71 == 1.4  Probe Dimension ==
72
73
74 [[image:1654827224480-952.png]]
75
76
77
78 == 1.5 ​ Applications ==
79
80 * Horizontal distance measurement
81 * Parking management system
82 * Object proximity and presence detection
83 * Intelligent trash can management system
84 * Robot obstacle avoidance
85 * Automatic control
86 * Sewer
87
88
89
90 == 1.6  Pin mapping and power on ==
91
92
93 [[image:1654827332142-133.png]]
94
95
96
97
98 = 2.  Configure LLDS12 to connect to LoRaWAN network =
99
100 == 2.1  How it works ==
101
102 (((
103 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
104 )))
105
106 (((
107 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
108 )))
109
110
111 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
112
113 (((
114 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
115 )))
116
117 (((
118 [[image:1654827857527-556.png]]
119 )))
120
121 (((
122 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
123 )))
124
125 (((
126 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
127 )))
128
129 (((
130 Each LSPH01 is shipped with a sticker with the default device EUI as below:
131 )))
132
133 [[image:image-20220607170145-1.jpeg]]
134
135
136
137 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
138
139
140 **Register the device**
141
142
143 [[image:1654592600093-601.png]]
144
145
146
147 **Add APP EUI and DEV EUI**
148
149 [[image:1654592619856-881.png]]
150
151
152
153 **Add APP EUI in the application**
154
155 [[image:1654592632656-512.png]]
156
157
158
159 **Add APP KEY**
160
161 [[image:1654592653453-934.png]]
162
163
164 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
165
166
167 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
168
169 [[image:image-20220607170442-2.png]]
170
171
172 (((
173 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
174 )))
175
176 [[image:1654833501679-968.png]]
177
178
179
180 == 2.3  ​Uplink Payload ==
181
182 (((
183 LSPH01 will uplink payload via LoRaWAN with below payload format: 
184 )))
185
186 (((
187 Uplink payload includes in total 11 bytes.
188 )))
189
190 (((
191 Normal uplink payload:
192 )))
193
194 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
195 |=(% style="width: 62.5px;" %)(((
196 **Size (bytes)**
197 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
198 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
199 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
200
201 [[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
202 )))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
203 [[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
204 )))|Reserve|(((
205 [[Message Type>>||anchor="H2.3.6MessageType"]]
206 )))
207
208 [[image:1654592721645-318.png]]
209
210
211
212 === 2.3.1 Battery Info ===
213
214
215 Check the battery voltage for LSPH01.
216
217 Ex1: 0x0B45 = 2885mV
218
219 Ex2: 0x0B49 = 2889mV
220
221
222
223 === 2.3.2 DS18B20 Temperature sensor ===
224
225 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
226
227
228 **Example**:
229
230 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
231
232 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
233
234
235
236 === 2.3.3 Soil pH ===
237
238 Range: 0 ~~ 14 pH
239
240 **Example:**
241
242 (% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
243
244
245
246 === 2.3.4 Soil Temperature ===
247
248 Get Soil Temperature 
249
250
251 **Example**:
252
253 If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
254
255 If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
256
257
258
259 === 2.3.5 Interrupt Pin ===
260
261 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
262
263
264 **Example:**
265
266 0x00: Normal uplink packet.
267
268 0x01: Interrupt Uplink Packet.
269
270
271
272 === 2.3.6 Message Type ===
273
274 (((
275 For a normal uplink payload, the message type is always 0x01.
276 )))
277
278 (((
279 Valid Message Type:
280 )))
281
282
283 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
284 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
285 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
286 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
287 |(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
288
289 === 2.3.7 Decode payload in The Things Network ===
290
291 While using TTN network, you can add the payload format to decode the payload.
292
293
294 [[image:1654592762713-715.png]]
295
296 (((
297 The payload decoder function for TTN is here:
298 )))
299
300 (((
301 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
302 )))
303
304
305
306 == 2.4  Uplink Interval ==
307
308 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
309
310
311
312 == 2.5  ​Show Data in DataCake IoT Server ==
313
314 (((
315 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
316 )))
317
318 (((
319
320 )))
321
322 (((
323 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
324 )))
325
326 (((
327 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
328 )))
329
330
331 [[image:1654592790040-760.png]]
332
333
334 [[image:1654592800389-571.png]]
335
336
337 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
338
339 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
340
341 [[image:1654832691989-514.png]]
342
343
344 [[image:1654592833877-762.png]]
345
346
347 [[image:1654832740634-933.png]]
348
349
350
351 (((
352 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
353 )))
354
355 (((
356
357 )))
358
359 [[image:1654833065139-942.png]]
360
361
362
363 [[image:1654833092678-390.png]]
364
365
366
367 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
368
369 [[image:1654833163048-332.png]]
370
371
372
373 == 2.6  Frequency Plans ==
374
375 (((
376 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
377 )))
378
379
380 === 2.6.1  EU863-870 (EU868) ===
381
382 (((
383 (% style="color:blue" %)**Uplink:**
384 )))
385
386 (((
387 868.1 - SF7BW125 to SF12BW125
388 )))
389
390 (((
391 868.3 - SF7BW125 to SF12BW125 and SF7BW250
392 )))
393
394 (((
395 868.5 - SF7BW125 to SF12BW125
396 )))
397
398 (((
399 867.1 - SF7BW125 to SF12BW125
400 )))
401
402 (((
403 867.3 - SF7BW125 to SF12BW125
404 )))
405
406 (((
407 867.5 - SF7BW125 to SF12BW125
408 )))
409
410 (((
411 867.7 - SF7BW125 to SF12BW125
412 )))
413
414 (((
415 867.9 - SF7BW125 to SF12BW125
416 )))
417
418 (((
419 868.8 - FSK
420 )))
421
422 (((
423
424 )))
425
426 (((
427 (% style="color:blue" %)**Downlink:**
428 )))
429
430 (((
431 Uplink channels 1-9 (RX1)
432 )))
433
434 (((
435 869.525 - SF9BW125 (RX2 downlink only)
436 )))
437
438
439
440 === 2.6.2  US902-928(US915) ===
441
442 (((
443 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
444 )))
445
446 (((
447 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
448 )))
449
450 (((
451 After Join success, the end node will switch to the correct sub band by:
452 )))
453
454 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
455 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
456
457 === 2.6.3 CN470-510 (CN470) ===
458
459 (((
460 Used in China, Default use CHE=1
461 )))
462
463 (((
464 (% style="color:blue" %)**Uplink:**
465 )))
466
467 (((
468 486.3 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 486.5 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 486.7 - SF7BW125 to SF12BW125
477 )))
478
479 (((
480 486.9 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484 487.1 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 487.3 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 487.5 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 487.7 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500
501 )))
502
503 (((
504 (% style="color:blue" %)**Downlink:**
505 )))
506
507 (((
508 506.7 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 506.9 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 507.1 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 507.3 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 507.5 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 507.7 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 507.9 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 508.1 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 505.3 - SF12BW125 (RX2 downlink only)
541 )))
542
543
544
545
546 === 2.6.4 AU915-928(AU915) ===
547
548 (((
549 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
550 )))
551
552 (((
553 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
554 )))
555
556 (((
557
558 )))
559
560 (((
561 After Join success, the end node will switch to the correct sub band by:
562 )))
563
564 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
565 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
566
567 === 2.6.5 AS920-923 & AS923-925 (AS923) ===
568
569 (((
570 (% style="color:blue" %)**Default Uplink channel:**
571 )))
572
573 (((
574 923.2 - SF7BW125 to SF10BW125
575 )))
576
577 (((
578 923.4 - SF7BW125 to SF10BW125
579 )))
580
581 (((
582
583 )))
584
585 (((
586 (% style="color:blue" %)**Additional Uplink Channel**:
587 )))
588
589 (((
590 (OTAA mode, channel added by JoinAccept message)
591 )))
592
593 (((
594
595 )))
596
597 (((
598 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
599 )))
600
601 (((
602 922.2 - SF7BW125 to SF10BW125
603 )))
604
605 (((
606 922.4 - SF7BW125 to SF10BW125
607 )))
608
609 (((
610 922.6 - SF7BW125 to SF10BW125
611 )))
612
613 (((
614 922.8 - SF7BW125 to SF10BW125
615 )))
616
617 (((
618 923.0 - SF7BW125 to SF10BW125
619 )))
620
621 (((
622 922.0 - SF7BW125 to SF10BW125
623 )))
624
625 (((
626
627 )))
628
629 (((
630 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
631 )))
632
633 (((
634 923.6 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 923.8 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642 924.0 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646 924.2 - SF7BW125 to SF10BW125
647 )))
648
649 (((
650 924.4 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 924.6 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658
659 )))
660
661 (((
662 (% style="color:blue" %)**Downlink:**
663 )))
664
665 (((
666 Uplink channels 1-8 (RX1)
667 )))
668
669 (((
670 923.2 - SF10BW125 (RX2)
671 )))
672
673
674
675
676 === 2.6.6 KR920-923 (KR920) ===
677
678 (((
679 (% style="color:blue" %)**Default channel:**
680 )))
681
682 (((
683 922.1 - SF7BW125 to SF12BW125
684 )))
685
686 (((
687 922.3 - SF7BW125 to SF12BW125
688 )))
689
690 (((
691 922.5 - SF7BW125 to SF12BW125
692 )))
693
694 (((
695
696 )))
697
698 (((
699 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
700 )))
701
702 (((
703 922.1 - SF7BW125 to SF12BW125
704 )))
705
706 (((
707 922.3 - SF7BW125 to SF12BW125
708 )))
709
710 (((
711 922.5 - SF7BW125 to SF12BW125
712 )))
713
714 (((
715 922.7 - SF7BW125 to SF12BW125
716 )))
717
718 (((
719 922.9 - SF7BW125 to SF12BW125
720 )))
721
722 (((
723 923.1 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727 923.3 - SF7BW125 to SF12BW125
728 )))
729
730 (((
731
732 )))
733
734 (((
735 (% style="color:blue" %)**Downlink:**
736 )))
737
738 (((
739 Uplink channels 1-7(RX1)
740 )))
741
742 (((
743 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
744 )))
745
746
747
748
749 === 2.6.7 IN865-867 (IN865) ===
750
751 (((
752 (% style="color:blue" %)**Uplink:**
753 )))
754
755 (((
756 865.0625 - SF7BW125 to SF12BW125
757 )))
758
759 (((
760 865.4025 - SF7BW125 to SF12BW125
761 )))
762
763 (((
764 865.9850 - SF7BW125 to SF12BW125
765 )))
766
767 (((
768
769 )))
770
771 (((
772 (% style="color:blue" %)**Downlink:**
773 )))
774
775 (((
776 Uplink channels 1-3 (RX1)
777 )))
778
779 (((
780 866.550 - SF10BW125 (RX2)
781 )))
782
783
784
785
786 == 2.7  LED Indicator ==
787
788 The LLDS12 has an internal LED which is to show the status of different state.
789
790 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
791 * Blink once when device transmit a packet.
792
793
794 == 2.8  ​Firmware Change Log ==
795
796
797 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
798
799
800 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
801
802
803
804 = 3.  LiDAR ToF Measurement =
805
806 == 3.1 Principle of Distance Measurement ==
807
808 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
809
810 [[image:1654831757579-263.png]]
811
812
813
814 == 3.2 Distance Measurement Characteristics ==
815
816 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
817
818 [[image:1654831774373-275.png]]
819
820
821 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
822
823 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
824
825 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
826
827
828 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
829
830
831 [[image:1654831797521-720.png]]
832
833
834 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
835
836 [[image:1654831810009-716.png]]
837
838
839 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
840
841
842
843 == 3.3 Notice of usage: ==
844
845 Possible invalid /wrong reading for LiDAR ToF tech:
846
847 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
848 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
849 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
850 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
851
852 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
853
854 (((
855 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
856 )))
857
858 * (((
859 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
860 )))
861 * (((
862 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
863 )))
864
865 (((
866
867
868 There are two kinds of commands to configure LLDS12, they are:
869 )))
870
871 * (((
872 (% style="color:#4f81bd" %)** General Commands**.
873 )))
874
875 (((
876 These commands are to configure:
877 )))
878
879 * (((
880 General system settings like: uplink interval.
881 )))
882 * (((
883 LoRaWAN protocol & radio related command.
884 )))
885
886 (((
887 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
888 )))
889
890 (((
891
892 )))
893
894 * (((
895 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
896 )))
897
898 (((
899 These commands only valid for LLDS12, as below:
900 )))
901
902
903
904 == 4.1  Set Transmit Interval Time ==
905
906 Feature: Change LoRaWAN End Node Transmit Interval.
907
908 (% style="color:#037691" %)**AT Command: AT+TDC**
909
910 [[image:image-20220607171554-8.png]]
911
912
913
914 (((
915 (% style="color:#037691" %)**Downlink Command: 0x01**
916 )))
917
918 (((
919 Format: Command Code (0x01) followed by 3 bytes time value.
920 )))
921
922 (((
923 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
924 )))
925
926 * (((
927 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
928 )))
929 * (((
930 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
931
932
933
934 )))
935
936 == 4.2  Set Interrupt Mode ==
937
938 Feature, Set Interrupt mode for GPIO_EXIT.
939
940 (% style="color:#037691" %)**AT Command: AT+INTMOD**
941
942 [[image:image-20220610105806-2.png]]
943
944
945
946
947 (((
948 (% style="color:#037691" %)**Downlink Command: 0x06**
949 )))
950
951 (((
952 Format: Command Code (0x06) followed by 3 bytes.
953 )))
954
955 (((
956 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
957 )))
958
959 * (((
960 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
961 )))
962 * (((
963 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
964 )))
965
966 == 4.3  Get Firmware Version Info ==
967
968 Feature: use downlink to get firmware version.
969
970 (% style="color:#037691" %)**Downlink Command: 0x26**
971
972 [[image:image-20220607171917-10.png]]
973
974 * Reply to the confirmation package: 26 01
975 * Reply to non-confirmed packet: 26 00
976
977 Device will send an uplink after got this downlink command. With below payload:
978
979 Configures info payload:
980
981 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
982 |=(((
983 **Size(bytes)**
984 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
985 |**Value**|Software Type|(((
986 Frequency
987
988 Band
989 )))|Sub-band|(((
990 Firmware
991
992 Version
993 )))|Sensor Type|Reserve|(((
994 [[Message Type>>||anchor="H2.3.6MessageType"]]
995 Always 0x02
996 )))
997
998 **Software Type**: Always 0x03 for LLDS12
999
1000
1001 **Frequency Band**:
1002
1003 *0x01: EU868
1004
1005 *0x02: US915
1006
1007 *0x03: IN865
1008
1009 *0x04: AU915
1010
1011 *0x05: KZ865
1012
1013 *0x06: RU864
1014
1015 *0x07: AS923
1016
1017 *0x08: AS923-1
1018
1019 *0x09: AS923-2
1020
1021 *0xa0: AS923-3
1022
1023
1024 **Sub-Band**: value 0x00 ~~ 0x08
1025
1026
1027 **Firmware Version**: 0x0100, Means: v1.0.0 version
1028
1029
1030 **Sensor Type**:
1031
1032 0x01: LSE01
1033
1034 0x02: LDDS75
1035
1036 0x03: LDDS20
1037
1038 0x04: LLMS01
1039
1040 0x05: LSPH01
1041
1042 0x06: LSNPK01
1043
1044 0x07: LLDS12
1045
1046
1047
1048 = 5.  Battery & How to replace =
1049
1050 == 5.1  Battery Type ==
1051
1052 (((
1053 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1054 )))
1055
1056 (((
1057 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1058 )))
1059
1060 [[image:1654593587246-335.png]]
1061
1062
1063 Minimum Working Voltage for the LLDS12:
1064
1065 LLDS12:  2.45v ~~ 3.6v
1066
1067
1068
1069 == 5.2  Replace Battery ==
1070
1071 (((
1072 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1073 )))
1074
1075 (((
1076 And make sure the positive and negative pins match.
1077 )))
1078
1079
1080
1081 == 5.3  Power Consumption Analyze ==
1082
1083 (((
1084 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1085 )))
1086
1087 (((
1088 Instruction to use as below:
1089 )))
1090
1091
1092 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1093
1094 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1095
1096
1097 **Step 2**: Open it and choose
1098
1099 * Product Model
1100 * Uplink Interval
1101 * Working Mode
1102
1103 And the Life expectation in difference case will be shown on the right.
1104
1105 [[image:1654593605679-189.png]]
1106
1107
1108 The battery related documents as below:
1109
1110 * (((
1111 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1112 )))
1113 * (((
1114 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1115 )))
1116 * (((
1117 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1118 )))
1119
1120 [[image:image-20220607172042-11.png]]
1121
1122
1123
1124 === 5.3.1  ​Battery Note ===
1125
1126 (((
1127 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1128 )))
1129
1130
1131
1132 === ​5.3.2  Replace the battery ===
1133
1134 (((
1135 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1136 )))
1137
1138 (((
1139 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1140 )))
1141
1142
1143
1144 = 6.  Use AT Command =
1145
1146 == 6.1  Access AT Commands ==
1147
1148 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1149
1150 [[image:1654593668970-604.png]]
1151
1152 **Connection:**
1153
1154 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1155
1156 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1157
1158 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1159
1160
1161 (((
1162 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1163 )))
1164
1165
1166 [[image:1654593712276-618.png]]
1167
1168 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1169
1170
1171 = 7.  FAQ =
1172
1173 == 7.1  How to change the LoRa Frequency Bands/Region ==
1174
1175 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1176 When downloading the images, choose the required image file for download. ​
1177
1178
1179 = 8.  Trouble Shooting =
1180
1181 == 8.1  AT Commands input doesn’t work ==
1182
1183
1184 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1185
1186
1187 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1188
1189
1190 (((
1191 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1192 )))
1193
1194 (((
1195 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1196 )))
1197
1198 (((
1199
1200 )))
1201
1202 (((
1203 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1204 )))
1205
1206 (((
1207 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1208 )))
1209
1210
1211
1212 = 9.  Order Info =
1213
1214
1215 Part Number: (% style="color:blue" %)**LLDS12-XX**
1216
1217
1218 (% style="color:blue" %)**XX**(%%): The default frequency band
1219
1220 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1221 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1222 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1223 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1224 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1225 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1226 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1227 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1228
1229 = 10. ​ Packing Info =
1230
1231
1232 **Package Includes**:
1233
1234 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1235
1236 **Dimension and weight**:
1237
1238 * Device Size: cm
1239 * Device Weight: g
1240 * Package Size / pcs : cm
1241 * Weight / pcs : g
1242
1243 = 11.  ​Support =
1244
1245 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1246 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1247
1248
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0