Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67
68 == 1.3  Probe Specification ==
69
70 * Storage temperature :-20℃~~75℃
71 * Operating temperature - -20℃~~60℃
72 * Operating Range - 0.1m~~12m①
73 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
74 * Distance resolution - 5mm
75 * Ambient light immunity - 70klux
76 * Enclosure rating - IP65
77 * Light source - LED
78 * Central wavelength - 850nm
79 * FOV - 3.6°
80 * Material of enclosure - ABS+PC
81 * Wire length - 25cm
82
83
84
85 == 1.4  Probe Dimension ==
86
87
88 [[image:1654827224480-952.png]]
89
90
91 == 1.5 ​ Applications ==
92
93 * Horizontal distance measurement
94 * Parking management system
95 * Object proximity and presence detection
96 * Intelligent trash can management system
97 * Robot obstacle avoidance
98 * Automatic control
99 * Sewer
100
101
102
103 == 1.6  Pin mapping and power on ==
104
105
106 [[image:1654827332142-133.png]]
107
108
109 = 2.  Configure LLDS12 to connect to LoRaWAN network =
110
111 == 2.1  How it works ==
112
113 (((
114 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
115 )))
116
117 (((
118 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
119 )))
120
121
122 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
123
124 (((
125 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 )))
127
128 (((
129 [[image:1654827857527-556.png]]
130 )))
131
132 (((
133 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
134 )))
135
136 (((
137 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
138 )))
139
140 (((
141 Each LSPH01 is shipped with a sticker with the default device EUI as below:
142 )))
143
144 [[image:image-20220607170145-1.jpeg]]
145
146
147
148 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
149
150
151 **Register the device**
152
153
154 [[image:1654592600093-601.png]]
155
156
157
158 **Add APP EUI and DEV EUI**
159
160 [[image:1654592619856-881.png]]
161
162
163
164 **Add APP EUI in the application**
165
166 [[image:1654592632656-512.png]]
167
168
169
170 **Add APP KEY**
171
172 [[image:1654592653453-934.png]]
173
174
175 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
176
177
178 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
179
180 [[image:image-20220607170442-2.png]]
181
182
183 (((
184 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
185 )))
186
187 [[image:1654833501679-968.png]]
188
189
190
191 == 2.3  ​Uplink Payload ==
192
193 (((
194 LLDS12 will uplink payload via LoRaWAN with below payload format: 
195 )))
196
197 (((
198 Uplink payload includes in total 11 bytes.
199 )))
200
201 (((
202
203 )))
204
205 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 |=(% style="width: 62.5px;" %)(((
207 **Size (bytes)**
208 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
209 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
210 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
211 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
213 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
214 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
215 )))
216
217 [[image:1654833689380-972.png]]
218
219
220
221 === 2.3.1  Battery Info ===
222
223
224 Check the battery voltage for LLDS12.
225
226 Ex1: 0x0B45 = 2885mV
227
228 Ex2: 0x0B49 = 2889mV
229
230
231
232 === 2.3.2  DS18B20 Temperature sensor ===
233
234 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
235
236
237 **Example**:
238
239 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
240
241 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
242
243
244
245 === 2.3.3  Distance ===
246
247 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
248
249
250 **Example**:
251
252 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
253
254
255
256 === 2.3.4  Distance signal strength ===
257
258 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
259
260
261 **Example**:
262
263 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
264
265 Customers can judge whether they need to adjust the environment based on the signal strength.
266
267
268
269 === 2.3.5  Interrupt Pin ===
270
271 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
272
273 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
274
275 **Example:**
276
277 0x00: Normal uplink packet.
278
279 0x01: Interrupt Uplink Packet.
280
281
282
283 === 2.3.6  LiDAR temp ===
284
285 Characterize the internal temperature value of the sensor.
286
287 **Example: **
288 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
289 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
290
291
292
293 === 2.3.7  Message Type ===
294
295 (((
296 For a normal uplink payload, the message type is always 0x01.
297 )))
298
299 (((
300 Valid Message Type:
301 )))
302
303
304 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
305 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
306 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
307 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
308
309
310
311 === 2.3.8  Decode payload in The Things Network ===
312
313 While using TTN network, you can add the payload format to decode the payload.
314
315
316 [[image:1654592762713-715.png]]
317
318 (((
319 The payload decoder function for TTN is here:
320 )))
321
322 (((
323 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
324 )))
325
326
327
328 == 2.4  Uplink Interval ==
329
330 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
331
332
333
334 == 2.5  ​Show Data in DataCake IoT Server ==
335
336 (((
337 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
338 )))
339
340 (((
341
342 )))
343
344 (((
345 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
346 )))
347
348 (((
349 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
350 )))
351
352
353 [[image:1654592790040-760.png]]
354
355
356 [[image:1654592800389-571.png]]
357
358
359 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
360
361 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
362
363 [[image:1654832691989-514.png]]
364
365
366 [[image:1654592833877-762.png]]
367
368
369 [[image:1654832740634-933.png]]
370
371
372
373 (((
374 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
375 )))
376
377 (((
378
379 )))
380
381 [[image:1654833065139-942.png]]
382
383
384
385 [[image:1654833092678-390.png]]
386
387
388
389 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
390
391 [[image:1654833163048-332.png]]
392
393
394
395 == 2.6  Frequency Plans ==
396
397 (((
398 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
399 )))
400
401
402 === 2.6.1  EU863-870 (EU868) ===
403
404 (((
405 (% style="color:blue" %)**Uplink:**
406 )))
407
408 (((
409 868.1 - SF7BW125 to SF12BW125
410 )))
411
412 (((
413 868.3 - SF7BW125 to SF12BW125 and SF7BW250
414 )))
415
416 (((
417 868.5 - SF7BW125 to SF12BW125
418 )))
419
420 (((
421 867.1 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.3 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.5 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 867.7 - SF7BW125 to SF12BW125
434 )))
435
436 (((
437 867.9 - SF7BW125 to SF12BW125
438 )))
439
440 (((
441 868.8 - FSK
442 )))
443
444 (((
445
446 )))
447
448 (((
449 (% style="color:blue" %)**Downlink:**
450 )))
451
452 (((
453 Uplink channels 1-9 (RX1)
454 )))
455
456 (((
457 869.525 - SF9BW125 (RX2 downlink only)
458 )))
459
460
461
462 === 2.6.2  US902-928(US915) ===
463
464 (((
465 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
466 )))
467
468 (((
469 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
470 )))
471
472 (((
473 After Join success, the end node will switch to the correct sub band by:
474 )))
475
476 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
477 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
478
479
480
481 === 2.6.3  CN470-510 (CN470) ===
482
483 (((
484 Used in China, Default use CHE=1
485 )))
486
487 (((
488 (% style="color:blue" %)**Uplink:**
489 )))
490
491 (((
492 486.3 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496 486.5 - SF7BW125 to SF12BW125
497 )))
498
499 (((
500 486.7 - SF7BW125 to SF12BW125
501 )))
502
503 (((
504 486.9 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 487.1 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 487.3 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 487.5 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 487.7 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524
525 )))
526
527 (((
528 (% style="color:blue" %)**Downlink:**
529 )))
530
531 (((
532 506.7 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 506.9 - SF7BW125 to SF12BW125
537 )))
538
539 (((
540 507.1 - SF7BW125 to SF12BW125
541 )))
542
543 (((
544 507.3 - SF7BW125 to SF12BW125
545 )))
546
547 (((
548 507.5 - SF7BW125 to SF12BW125
549 )))
550
551 (((
552 507.7 - SF7BW125 to SF12BW125
553 )))
554
555 (((
556 507.9 - SF7BW125 to SF12BW125
557 )))
558
559 (((
560 508.1 - SF7BW125 to SF12BW125
561 )))
562
563 (((
564 505.3 - SF12BW125 (RX2 downlink only)
565 )))
566
567
568
569
570 === 2.6.4  AU915-928(AU915) ===
571
572 (((
573 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
574 )))
575
576 (((
577 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
578 )))
579
580 (((
581
582 )))
583
584 (((
585 After Join success, the end node will switch to the correct sub band by:
586 )))
587
588 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
589 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
590
591
592
593 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
594
595 (((
596 (% style="color:blue" %)**Default Uplink channel:**
597 )))
598
599 (((
600 923.2 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604 923.4 - SF7BW125 to SF10BW125
605 )))
606
607 (((
608
609 )))
610
611 (((
612 (% style="color:blue" %)**Additional Uplink Channel**:
613 )))
614
615 (((
616 (OTAA mode, channel added by JoinAccept message)
617 )))
618
619 (((
620
621 )))
622
623 (((
624 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
625 )))
626
627 (((
628 922.2 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.4 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.6 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 922.8 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 923.0 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648 922.0 - SF7BW125 to SF10BW125
649 )))
650
651 (((
652
653 )))
654
655 (((
656 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
657 )))
658
659 (((
660 923.6 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 923.8 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.0 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.2 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 924.4 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680 924.6 - SF7BW125 to SF10BW125
681 )))
682
683 (((
684
685 )))
686
687 (((
688 (% style="color:blue" %)**Downlink:**
689 )))
690
691 (((
692 Uplink channels 1-8 (RX1)
693 )))
694
695 (((
696 923.2 - SF10BW125 (RX2)
697 )))
698
699
700
701
702 === 2.6.6  KR920-923 (KR920) ===
703
704 (((
705 (% style="color:blue" %)**Default channel:**
706 )))
707
708 (((
709 922.1 - SF7BW125 to SF12BW125
710 )))
711
712 (((
713 922.3 - SF7BW125 to SF12BW125
714 )))
715
716 (((
717 922.5 - SF7BW125 to SF12BW125
718 )))
719
720 (((
721
722 )))
723
724 (((
725 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
726 )))
727
728 (((
729 922.1 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 922.3 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 922.5 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 922.7 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745 922.9 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749 923.1 - SF7BW125 to SF12BW125
750 )))
751
752 (((
753 923.3 - SF7BW125 to SF12BW125
754 )))
755
756 (((
757
758 )))
759
760 (((
761 (% style="color:blue" %)**Downlink:**
762 )))
763
764 (((
765 Uplink channels 1-7(RX1)
766 )))
767
768 (((
769 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
770 )))
771
772
773
774
775 === 2.6.7  IN865-867 (IN865) ===
776
777 (((
778 (% style="color:blue" %)**Uplink:**
779 )))
780
781 (((
782 865.0625 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786 865.4025 - SF7BW125 to SF12BW125
787 )))
788
789 (((
790 865.9850 - SF7BW125 to SF12BW125
791 )))
792
793 (((
794
795 )))
796
797 (((
798 (% style="color:blue" %)**Downlink:**
799 )))
800
801 (((
802 Uplink channels 1-3 (RX1)
803 )))
804
805 (((
806 866.550 - SF10BW125 (RX2)
807 )))
808
809
810
811
812 == 2.7  LED Indicator ==
813
814 The LLDS12 has an internal LED which is to show the status of different state.
815
816 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
817 * Blink once when device transmit a packet.
818
819
820
821 == 2.8  ​Firmware Change Log ==
822
823
824 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
825
826
827 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
828
829
830
831 = 3.  LiDAR ToF Measurement =
832
833 == 3.1 Principle of Distance Measurement ==
834
835 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
836
837 [[image:1654831757579-263.png]]
838
839
840
841 == 3.2 Distance Measurement Characteristics ==
842
843 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
844
845 [[image:1654831774373-275.png]]
846
847
848 (((
849 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
850 )))
851
852 (((
853 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
854 )))
855
856 (((
857 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
858 )))
859
860
861 (((
862 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
863 )))
864
865
866 [[image:1654831797521-720.png]]
867
868
869 (((
870 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
871 )))
872
873 [[image:1654831810009-716.png]]
874
875
876 (((
877 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
878 )))
879
880
881
882 == 3.3 Notice of usage: ==
883
884 Possible invalid /wrong reading for LiDAR ToF tech:
885
886 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
887 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
888 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
889 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
890
891
892
893 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
894
895 (((
896 (((
897 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
898 )))
899 )))
900
901 * (((
902 (((
903 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
904 )))
905 )))
906 * (((
907 (((
908 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
909 )))
910 )))
911
912 (((
913 (((
914
915 )))
916
917 (((
918 There are two kinds of commands to configure LLDS12, they are:
919 )))
920 )))
921
922 * (((
923 (((
924 (% style="color:#4f81bd" %)** General Commands**.
925 )))
926 )))
927
928 (((
929 (((
930 These commands are to configure:
931 )))
932 )))
933
934 * (((
935 (((
936 General system settings like: uplink interval.
937 )))
938 )))
939 * (((
940 (((
941 LoRaWAN protocol & radio related command.
942 )))
943 )))
944
945 (((
946 (((
947 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
948 )))
949 )))
950
951 (((
952 (((
953
954 )))
955 )))
956
957 * (((
958 (((
959 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
960 )))
961 )))
962
963 (((
964 (((
965 These commands only valid for LLDS12, as below:
966 )))
967 )))
968
969
970
971 == 4.1  Set Transmit Interval Time ==
972
973 Feature: Change LoRaWAN End Node Transmit Interval.
974
975 (% style="color:#037691" %)**AT Command: AT+TDC**
976
977 [[image:image-20220607171554-8.png]]
978
979
980 (((
981 (% style="color:#037691" %)**Downlink Command: 0x01**
982 )))
983
984 (((
985 Format: Command Code (0x01) followed by 3 bytes time value.
986 )))
987
988 (((
989 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
990 )))
991
992 * (((
993 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
994 )))
995 * (((
996 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
997 )))
998
999
1000
1001 == 4.2  Set Interrupt Mode ==
1002
1003 Feature, Set Interrupt mode for GPIO_EXIT.
1004
1005 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1006
1007 [[image:image-20220610105806-2.png]]
1008
1009
1010 (((
1011 (% style="color:#037691" %)**Downlink Command: 0x06**
1012 )))
1013
1014 (((
1015 Format: Command Code (0x06) followed by 3 bytes.
1016 )))
1017
1018 (((
1019 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1020 )))
1021
1022 * (((
1023 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1024 )))
1025 * (((
1026 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1027 )))
1028
1029
1030
1031 == 4.3  Get Firmware Version Info ==
1032
1033 Feature: use downlink to get firmware version.
1034
1035 (% style="color:#037691" %)**Downlink Command: 0x26**
1036
1037 [[image:image-20220607171917-10.png]]
1038
1039 * Reply to the confirmation package: 26 01
1040 * Reply to non-confirmed packet: 26 00
1041
1042 Device will send an uplink after got this downlink command. With below payload:
1043
1044 Configures info payload:
1045
1046 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1047 |=(((
1048 **Size(bytes)**
1049 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1050 |**Value**|Software Type|(((
1051 Frequency
1052
1053 Band
1054 )))|Sub-band|(((
1055 Firmware
1056
1057 Version
1058 )))|Sensor Type|Reserve|(((
1059 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1060 Always 0x02
1061 )))
1062
1063 **Software Type**: Always 0x03 for LLDS12
1064
1065
1066 **Frequency Band**:
1067
1068 *0x01: EU868
1069
1070 *0x02: US915
1071
1072 *0x03: IN865
1073
1074 *0x04: AU915
1075
1076 *0x05: KZ865
1077
1078 *0x06: RU864
1079
1080 *0x07: AS923
1081
1082 *0x08: AS923-1
1083
1084 *0x09: AS923-2
1085
1086 *0xa0: AS923-3
1087
1088
1089 **Sub-Band**: value 0x00 ~~ 0x08
1090
1091
1092 **Firmware Version**: 0x0100, Means: v1.0.0 version
1093
1094
1095 **Sensor Type**:
1096
1097 0x01: LSE01
1098
1099 0x02: LDDS75
1100
1101 0x03: LDDS20
1102
1103 0x04: LLMS01
1104
1105 0x05: LSPH01
1106
1107 0x06: LSNPK01
1108
1109 0x07: LLDS12
1110
1111
1112
1113 = 5.  Battery & How to replace =
1114
1115 == 5.1  Battery Type ==
1116
1117 (((
1118 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1119 )))
1120
1121 (((
1122 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1123 )))
1124
1125 [[image:1654593587246-335.png]]
1126
1127
1128 Minimum Working Voltage for the LLDS12:
1129
1130 LLDS12:  2.45v ~~ 3.6v
1131
1132
1133
1134 == 5.2  Replace Battery ==
1135
1136 (((
1137 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1138 )))
1139
1140 (((
1141 And make sure the positive and negative pins match.
1142 )))
1143
1144
1145
1146 == 5.3  Power Consumption Analyze ==
1147
1148 (((
1149 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1150 )))
1151
1152 (((
1153 Instruction to use as below:
1154 )))
1155
1156
1157 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1158
1159 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1160
1161
1162 **Step 2**: Open it and choose
1163
1164 * Product Model
1165 * Uplink Interval
1166 * Working Mode
1167
1168 And the Life expectation in difference case will be shown on the right.
1169
1170 [[image:1654593605679-189.png]]
1171
1172
1173 The battery related documents as below:
1174
1175 * (((
1176 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1177 )))
1178 * (((
1179 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1180 )))
1181 * (((
1182 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1183 )))
1184
1185 [[image:image-20220607172042-11.png]]
1186
1187
1188
1189 === 5.3.1  ​Battery Note ===
1190
1191 (((
1192 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1193 )))
1194
1195
1196
1197 === ​5.3.2  Replace the battery ===
1198
1199 (((
1200 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1201 )))
1202
1203 (((
1204 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1205 )))
1206
1207
1208
1209 = 6.  Use AT Command =
1210
1211 == 6.1  Access AT Commands ==
1212
1213 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1214
1215 [[image:1654593668970-604.png]]
1216
1217 **Connection:**
1218
1219 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1220
1221 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1222
1223 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1224
1225
1226 (((
1227 (((
1228 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1229 )))
1230
1231 (((
1232 LLDS12 will output system info once power on as below:
1233 )))
1234 )))
1235
1236
1237 [[image:1654593712276-618.png]]
1238
1239 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1240
1241
1242 = 7.  FAQ =
1243
1244 == 7.1  How to change the LoRa Frequency Bands/Region ==
1245
1246 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1247 When downloading the images, choose the required image file for download. ​
1248
1249
1250 = 8.  Trouble Shooting =
1251
1252 == 8.1  AT Commands input doesn’t work ==
1253
1254
1255 (((
1256 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1257 )))
1258
1259
1260 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1261
1262
1263 (((
1264 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1265 )))
1266
1267 (((
1268 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1269 )))
1270
1271 (((
1272
1273 )))
1274
1275 (((
1276 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1277 )))
1278
1279 (((
1280 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1281 )))
1282
1283
1284
1285 = 9.  Order Info =
1286
1287
1288 Part Number: (% style="color:blue" %)**LLDS12-XX**
1289
1290
1291 (% style="color:blue" %)**XX**(%%): The default frequency band
1292
1293 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1294 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1295 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1296 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1297 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1298 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1299 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1300 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1301
1302
1303
1304 = 10. ​ Packing Info =
1305
1306
1307 **Package Includes**:
1308
1309 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1310
1311 **Dimension and weight**:
1312
1313 * Device Size: cm
1314 * Device Weight: g
1315 * Package Size / pcs : cm
1316 * Weight / pcs : g
1317
1318
1319
1320 = 11.  ​Support =
1321
1322 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1323 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0