Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67
68
69 == 1.3  Probe Specification ==
70
71 * Storage temperature :-20℃~~75℃
72 * Operating temperature - -20℃~~60℃
73 * Operating Range - 0.1m~~12m①
74 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution - 5mm
76 * Ambient light immunity - 70klux
77 * Enclosure rating - IP65
78 * Light source - LED
79 * Central wavelength - 850nm
80 * FOV - 3.6°
81 * Material of enclosure - ABS+PC
82 * Wire length - 25cm
83
84
85
86
87 == 1.4  Probe Dimension ==
88
89
90 [[image:1654827224480-952.png]]
91
92
93 == 1.5 ​ Applications ==
94
95 * Horizontal distance measurement
96 * Parking management system
97 * Object proximity and presence detection
98 * Intelligent trash can management system
99 * Robot obstacle avoidance
100 * Automatic control
101 * Sewer
102
103
104
105
106 == 1.6  Pin mapping and power on ==
107
108
109 [[image:1654827332142-133.png]]
110
111
112
113 = 2.  Configure LLDS12 to connect to LoRaWAN network =
114
115 == 2.1  How it works ==
116
117 (((
118 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
119 )))
120
121 (((
122 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
123 )))
124
125
126 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
127
128 (((
129 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
130 )))
131
132 (((
133 [[image:1654827857527-556.png]]
134 )))
135
136 (((
137 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
138 )))
139
140 (((
141 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
142 )))
143
144 (((
145 Each LSPH01 is shipped with a sticker with the default device EUI as below:
146 )))
147
148 [[image:image-20220607170145-1.jpeg]]
149
150
151
152 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
153
154
155 **Register the device**
156
157
158 [[image:1654592600093-601.png]]
159
160
161
162 **Add APP EUI and DEV EUI**
163
164 [[image:1654592619856-881.png]]
165
166
167
168 **Add APP EUI in the application**
169
170 [[image:1654592632656-512.png]]
171
172
173
174 **Add APP KEY**
175
176 [[image:1654592653453-934.png]]
177
178
179 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
180
181
182 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
183
184 [[image:image-20220607170442-2.png]]
185
186
187 (((
188 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
189 )))
190
191 [[image:1654833501679-968.png]]
192
193
194
195 == 2.3  ​Uplink Payload ==
196
197 (((
198 LLDS12 will uplink payload via LoRaWAN with below payload format: 
199 )))
200
201 (((
202 Uplink payload includes in total 11 bytes.
203 )))
204
205 (((
206
207 )))
208
209 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
210 |=(% style="width: 62.5px;" %)(((
211 **Size (bytes)**
212 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
213 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
214 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
215
216 [[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
217 )))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
218 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
219 )))|[[LiDAR temp>>||anchor="H"]]|(((
220 [[Message Type>>||anchor="H2.3.6MessageType"]]
221 )))
222
223 [[image:1654833689380-972.png]]
224
225
226
227 === 2.3.1  Battery Info ===
228
229
230 Check the battery voltage for LLDS12.
231
232 Ex1: 0x0B45 = 2885mV
233
234 Ex2: 0x0B49 = 2889mV
235
236
237
238 === 2.3.2  DS18B20 Temperature sensor ===
239
240 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
241
242
243 **Example**:
244
245 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
246
247 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
248
249
250
251 === 2.3.3  Distance ===
252
253 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
254
255
256 **Example**:
257
258 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
259
260
261
262 === 2.3.4  Distance signal strength ===
263
264 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
265
266
267 **Example**:
268
269 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
270
271 Customers can judge whether they need to adjust the environment based on the signal strength.
272
273
274
275 === 2.3.5  Interrupt Pin ===
276
277 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
278
279 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
280
281 **Example:**
282
283 0x00: Normal uplink packet.
284
285 0x01: Interrupt Uplink Packet.
286
287
288
289 === 2.3.6  LiDAR temp ===
290
291 Characterize the internal temperature value of the sensor.
292
293 **Example: **
294 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
295 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
296
297
298
299 === 2.3.7  Message Type ===
300
301 (((
302 For a normal uplink payload, the message type is always 0x01.
303 )))
304
305 (((
306 Valid Message Type:
307 )))
308
309
310 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
311 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
312 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
313 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
314
315
316 === 2.3.8  Decode payload in The Things Network ===
317
318 While using TTN network, you can add the payload format to decode the payload.
319
320
321 [[image:1654592762713-715.png]]
322
323 (((
324 The payload decoder function for TTN is here:
325 )))
326
327 (((
328 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
329 )))
330
331
332
333 == 2.4  Uplink Interval ==
334
335 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
336
337
338
339 == 2.5  ​Show Data in DataCake IoT Server ==
340
341 (((
342 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
343 )))
344
345 (((
346
347 )))
348
349 (((
350 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
351 )))
352
353 (((
354 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
355 )))
356
357
358 [[image:1654592790040-760.png]]
359
360
361 [[image:1654592800389-571.png]]
362
363
364 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
365
366 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
367
368 [[image:1654832691989-514.png]]
369
370
371 [[image:1654592833877-762.png]]
372
373
374 [[image:1654832740634-933.png]]
375
376
377
378 (((
379 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
380 )))
381
382 (((
383
384 )))
385
386 [[image:1654833065139-942.png]]
387
388
389
390 [[image:1654833092678-390.png]]
391
392
393
394 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
395
396 [[image:1654833163048-332.png]]
397
398
399
400 == 2.6  Frequency Plans ==
401
402 (((
403 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
404 )))
405
406
407 === 2.6.1  EU863-870 (EU868) ===
408
409 (((
410 (% style="color:blue" %)**Uplink:**
411 )))
412
413 (((
414 868.1 - SF7BW125 to SF12BW125
415 )))
416
417 (((
418 868.3 - SF7BW125 to SF12BW125 and SF7BW250
419 )))
420
421 (((
422 868.5 - SF7BW125 to SF12BW125
423 )))
424
425 (((
426 867.1 - SF7BW125 to SF12BW125
427 )))
428
429 (((
430 867.3 - SF7BW125 to SF12BW125
431 )))
432
433 (((
434 867.5 - SF7BW125 to SF12BW125
435 )))
436
437 (((
438 867.7 - SF7BW125 to SF12BW125
439 )))
440
441 (((
442 867.9 - SF7BW125 to SF12BW125
443 )))
444
445 (((
446 868.8 - FSK
447 )))
448
449 (((
450
451 )))
452
453 (((
454 (% style="color:blue" %)**Downlink:**
455 )))
456
457 (((
458 Uplink channels 1-9 (RX1)
459 )))
460
461 (((
462 869.525 - SF9BW125 (RX2 downlink only)
463 )))
464
465
466
467 === 2.6.2  US902-928(US915) ===
468
469 (((
470 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
471 )))
472
473 (((
474 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
475 )))
476
477 (((
478 After Join success, the end node will switch to the correct sub band by:
479 )))
480
481 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
482 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
483
484 === 2.6.3  CN470-510 (CN470) ===
485
486 (((
487 Used in China, Default use CHE=1
488 )))
489
490 (((
491 (% style="color:blue" %)**Uplink:**
492 )))
493
494 (((
495 486.3 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 486.5 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 486.7 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 486.9 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 487.1 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 487.3 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519 487.5 - SF7BW125 to SF12BW125
520 )))
521
522 (((
523 487.7 - SF7BW125 to SF12BW125
524 )))
525
526 (((
527
528 )))
529
530 (((
531 (% style="color:blue" %)**Downlink:**
532 )))
533
534 (((
535 506.7 - SF7BW125 to SF12BW125
536 )))
537
538 (((
539 506.9 - SF7BW125 to SF12BW125
540 )))
541
542 (((
543 507.1 - SF7BW125 to SF12BW125
544 )))
545
546 (((
547 507.3 - SF7BW125 to SF12BW125
548 )))
549
550 (((
551 507.5 - SF7BW125 to SF12BW125
552 )))
553
554 (((
555 507.7 - SF7BW125 to SF12BW125
556 )))
557
558 (((
559 507.9 - SF7BW125 to SF12BW125
560 )))
561
562 (((
563 508.1 - SF7BW125 to SF12BW125
564 )))
565
566 (((
567 505.3 - SF12BW125 (RX2 downlink only)
568 )))
569
570
571
572
573 === 2.6.4  AU915-928(AU915) ===
574
575 (((
576 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
577 )))
578
579 (((
580 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
581 )))
582
583 (((
584
585 )))
586
587 (((
588 After Join success, the end node will switch to the correct sub band by:
589 )))
590
591 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
592 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
593
594 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
595
596 (((
597 (% style="color:blue" %)**Default Uplink channel:**
598 )))
599
600 (((
601 923.2 - SF7BW125 to SF10BW125
602 )))
603
604 (((
605 923.4 - SF7BW125 to SF10BW125
606 )))
607
608 (((
609
610 )))
611
612 (((
613 (% style="color:blue" %)**Additional Uplink Channel**:
614 )))
615
616 (((
617 (OTAA mode, channel added by JoinAccept message)
618 )))
619
620 (((
621
622 )))
623
624 (((
625 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
626 )))
627
628 (((
629 922.2 - SF7BW125 to SF10BW125
630 )))
631
632 (((
633 922.4 - SF7BW125 to SF10BW125
634 )))
635
636 (((
637 922.6 - SF7BW125 to SF10BW125
638 )))
639
640 (((
641 922.8 - SF7BW125 to SF10BW125
642 )))
643
644 (((
645 923.0 - SF7BW125 to SF10BW125
646 )))
647
648 (((
649 922.0 - SF7BW125 to SF10BW125
650 )))
651
652 (((
653
654 )))
655
656 (((
657 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
658 )))
659
660 (((
661 923.6 - SF7BW125 to SF10BW125
662 )))
663
664 (((
665 923.8 - SF7BW125 to SF10BW125
666 )))
667
668 (((
669 924.0 - SF7BW125 to SF10BW125
670 )))
671
672 (((
673 924.2 - SF7BW125 to SF10BW125
674 )))
675
676 (((
677 924.4 - SF7BW125 to SF10BW125
678 )))
679
680 (((
681 924.6 - SF7BW125 to SF10BW125
682 )))
683
684 (((
685
686 )))
687
688 (((
689 (% style="color:blue" %)**Downlink:**
690 )))
691
692 (((
693 Uplink channels 1-8 (RX1)
694 )))
695
696 (((
697 923.2 - SF10BW125 (RX2)
698 )))
699
700
701
702
703 === 2.6.6  KR920-923 (KR920) ===
704
705 (((
706 (% style="color:blue" %)**Default channel:**
707 )))
708
709 (((
710 922.1 - SF7BW125 to SF12BW125
711 )))
712
713 (((
714 922.3 - SF7BW125 to SF12BW125
715 )))
716
717 (((
718 922.5 - SF7BW125 to SF12BW125
719 )))
720
721 (((
722
723 )))
724
725 (((
726 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
727 )))
728
729 (((
730 922.1 - SF7BW125 to SF12BW125
731 )))
732
733 (((
734 922.3 - SF7BW125 to SF12BW125
735 )))
736
737 (((
738 922.5 - SF7BW125 to SF12BW125
739 )))
740
741 (((
742 922.7 - SF7BW125 to SF12BW125
743 )))
744
745 (((
746 922.9 - SF7BW125 to SF12BW125
747 )))
748
749 (((
750 923.1 - SF7BW125 to SF12BW125
751 )))
752
753 (((
754 923.3 - SF7BW125 to SF12BW125
755 )))
756
757 (((
758
759 )))
760
761 (((
762 (% style="color:blue" %)**Downlink:**
763 )))
764
765 (((
766 Uplink channels 1-7(RX1)
767 )))
768
769 (((
770 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
771 )))
772
773
774
775
776 === 2.6.7  IN865-867 (IN865) ===
777
778 (((
779 (% style="color:blue" %)**Uplink:**
780 )))
781
782 (((
783 865.0625 - SF7BW125 to SF12BW125
784 )))
785
786 (((
787 865.4025 - SF7BW125 to SF12BW125
788 )))
789
790 (((
791 865.9850 - SF7BW125 to SF12BW125
792 )))
793
794 (((
795
796 )))
797
798 (((
799 (% style="color:blue" %)**Downlink:**
800 )))
801
802 (((
803 Uplink channels 1-3 (RX1)
804 )))
805
806 (((
807 866.550 - SF10BW125 (RX2)
808 )))
809
810
811
812
813 == 2.7  LED Indicator ==
814
815 The LLDS12 has an internal LED which is to show the status of different state.
816
817 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
818 * Blink once when device transmit a packet.
819
820 == 2.8  ​Firmware Change Log ==
821
822
823 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
824
825
826 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
827
828
829
830 = 3.  LiDAR ToF Measurement =
831
832 == 3.1 Principle of Distance Measurement ==
833
834 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
835
836 [[image:1654831757579-263.png]]
837
838
839
840 == 3.2 Distance Measurement Characteristics ==
841
842 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
843
844 [[image:1654831774373-275.png]]
845
846
847 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
848
849 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
850
851 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
852
853
854 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
855
856
857 [[image:1654831797521-720.png]]
858
859
860 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
861
862 [[image:1654831810009-716.png]]
863
864
865 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
866
867
868
869 == 3.3 Notice of usage: ==
870
871 Possible invalid /wrong reading for LiDAR ToF tech:
872
873 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
874 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
875 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
876 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
877
878 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
879
880 (((
881 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
882 )))
883
884 * (((
885 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
886 )))
887 * (((
888 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
889 )))
890
891 (((
892
893
894 There are two kinds of commands to configure LLDS12, they are:
895 )))
896
897 * (((
898 (% style="color:#4f81bd" %)** General Commands**.
899 )))
900
901 (((
902 These commands are to configure:
903 )))
904
905 * (((
906 General system settings like: uplink interval.
907 )))
908 * (((
909 LoRaWAN protocol & radio related command.
910 )))
911
912 (((
913 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
914 )))
915
916 (((
917
918 )))
919
920 * (((
921 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
922 )))
923
924 (((
925 These commands only valid for LLDS12, as below:
926 )))
927
928
929
930 == 4.1  Set Transmit Interval Time ==
931
932 Feature: Change LoRaWAN End Node Transmit Interval.
933
934 (% style="color:#037691" %)**AT Command: AT+TDC**
935
936 [[image:image-20220607171554-8.png]]
937
938
939
940 (((
941 (% style="color:#037691" %)**Downlink Command: 0x01**
942 )))
943
944 (((
945 Format: Command Code (0x01) followed by 3 bytes time value.
946 )))
947
948 (((
949 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
950 )))
951
952 * (((
953 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
954 )))
955 * (((
956 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
957
958
959
960 )))
961
962 == 4.2  Set Interrupt Mode ==
963
964 Feature, Set Interrupt mode for GPIO_EXIT.
965
966 (% style="color:#037691" %)**AT Command: AT+INTMOD**
967
968 [[image:image-20220610105806-2.png]]
969
970
971
972
973 (((
974 (% style="color:#037691" %)**Downlink Command: 0x06**
975 )))
976
977 (((
978 Format: Command Code (0x06) followed by 3 bytes.
979 )))
980
981 (((
982 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
983 )))
984
985 * (((
986 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
987 )))
988 * (((
989 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
990 )))
991
992 == 4.3  Get Firmware Version Info ==
993
994 Feature: use downlink to get firmware version.
995
996 (% style="color:#037691" %)**Downlink Command: 0x26**
997
998 [[image:image-20220607171917-10.png]]
999
1000 * Reply to the confirmation package: 26 01
1001 * Reply to non-confirmed packet: 26 00
1002
1003 Device will send an uplink after got this downlink command. With below payload:
1004
1005 Configures info payload:
1006
1007 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1008 |=(((
1009 **Size(bytes)**
1010 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1011 |**Value**|Software Type|(((
1012 Frequency
1013
1014 Band
1015 )))|Sub-band|(((
1016 Firmware
1017
1018 Version
1019 )))|Sensor Type|Reserve|(((
1020 [[Message Type>>||anchor="H2.3.6MessageType"]]
1021 Always 0x02
1022 )))
1023
1024 **Software Type**: Always 0x03 for LLDS12
1025
1026
1027 **Frequency Band**:
1028
1029 *0x01: EU868
1030
1031 *0x02: US915
1032
1033 *0x03: IN865
1034
1035 *0x04: AU915
1036
1037 *0x05: KZ865
1038
1039 *0x06: RU864
1040
1041 *0x07: AS923
1042
1043 *0x08: AS923-1
1044
1045 *0x09: AS923-2
1046
1047 *0xa0: AS923-3
1048
1049
1050 **Sub-Band**: value 0x00 ~~ 0x08
1051
1052
1053 **Firmware Version**: 0x0100, Means: v1.0.0 version
1054
1055
1056 **Sensor Type**:
1057
1058 0x01: LSE01
1059
1060 0x02: LDDS75
1061
1062 0x03: LDDS20
1063
1064 0x04: LLMS01
1065
1066 0x05: LSPH01
1067
1068 0x06: LSNPK01
1069
1070 0x07: LLDS12
1071
1072
1073
1074 = 5.  Battery & How to replace =
1075
1076 == 5.1  Battery Type ==
1077
1078 (((
1079 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1080 )))
1081
1082 (((
1083 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1084 )))
1085
1086 [[image:1654593587246-335.png]]
1087
1088
1089 Minimum Working Voltage for the LLDS12:
1090
1091 LLDS12:  2.45v ~~ 3.6v
1092
1093
1094
1095 == 5.2  Replace Battery ==
1096
1097 (((
1098 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1099 )))
1100
1101 (((
1102 And make sure the positive and negative pins match.
1103 )))
1104
1105
1106
1107 == 5.3  Power Consumption Analyze ==
1108
1109 (((
1110 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1111 )))
1112
1113 (((
1114 Instruction to use as below:
1115 )))
1116
1117
1118 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1119
1120 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1121
1122
1123 **Step 2**: Open it and choose
1124
1125 * Product Model
1126 * Uplink Interval
1127 * Working Mode
1128
1129 And the Life expectation in difference case will be shown on the right.
1130
1131 [[image:1654593605679-189.png]]
1132
1133
1134 The battery related documents as below:
1135
1136 * (((
1137 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1138 )))
1139 * (((
1140 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1141 )))
1142 * (((
1143 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1144 )))
1145
1146 [[image:image-20220607172042-11.png]]
1147
1148
1149
1150 === 5.3.1  ​Battery Note ===
1151
1152 (((
1153 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1154 )))
1155
1156
1157
1158 === ​5.3.2  Replace the battery ===
1159
1160 (((
1161 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1162 )))
1163
1164 (((
1165 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1166 )))
1167
1168
1169
1170 = 6.  Use AT Command =
1171
1172 == 6.1  Access AT Commands ==
1173
1174 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1175
1176 [[image:1654593668970-604.png]]
1177
1178 **Connection:**
1179
1180 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1181
1182 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1183
1184 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1185
1186
1187 (((
1188 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1189 )))
1190
1191
1192 [[image:1654593712276-618.png]]
1193
1194 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1195
1196
1197 = 7.  FAQ =
1198
1199 == 7.1  How to change the LoRa Frequency Bands/Region ==
1200
1201 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1202 When downloading the images, choose the required image file for download. ​
1203
1204
1205 = 8.  Trouble Shooting =
1206
1207 == 8.1  AT Commands input doesn’t work ==
1208
1209
1210 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1211
1212
1213 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1214
1215
1216 (((
1217 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1218 )))
1219
1220 (((
1221 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1222 )))
1223
1224 (((
1225
1226 )))
1227
1228 (((
1229 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1230 )))
1231
1232 (((
1233 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1234 )))
1235
1236
1237
1238 = 9.  Order Info =
1239
1240
1241 Part Number: (% style="color:blue" %)**LLDS12-XX**
1242
1243
1244 (% style="color:blue" %)**XX**(%%): The default frequency band
1245
1246 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1247 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1248 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1249 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1250 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1251 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1252 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1253 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1254
1255 = 10. ​ Packing Info =
1256
1257
1258 **Package Includes**:
1259
1260 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1261
1262 **Dimension and weight**:
1263
1264 * Device Size: cm
1265 * Device Weight: g
1266 * Package Size / pcs : cm
1267 * Weight / pcs : g
1268
1269 = 11.  ​Support =
1270
1271 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1272 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0