Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16
17 (((
18
19
20 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21
22 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23
24 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25
26 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27
28 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
29
30 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
31 )))
32
33
34 [[image:1654826306458-414.png]]
35
36
37
38 == ​1.2  Features ==
39
40 * LoRaWAN 1.0.3 Class A
41 * Ultra-low power consumption
42 * Laser technology for distance detection
43 * Operating Range - 0.1m~~12m①
44 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 * Monitor Battery Level
46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 * AT Commands to change parameters
48 * Uplink on periodically
49 * Downlink to change configure
50 * 8500mAh Battery for long term use
51
52 == 1.3  Probe Specification ==
53
54 * Storage temperature :-20℃~~75℃
55 * Operating temperature - -20℃~~60℃
56 * Operating Range - 0.1m~~12m①
57 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 * Distance resolution - 5mm
59 * Ambient light immunity - 70klux
60 * Enclosure rating - IP65
61 * Light source - LED
62 * Central wavelength - 850nm
63 * FOV - 3.6°
64 * Material of enclosure - ABS+PC
65 * Wire length - 25cm
66
67 == 1.4  Probe Dimension ==
68
69
70 [[image:1654827224480-952.png]]
71
72
73
74 == 1.5 ​ Applications ==
75
76 * Horizontal distance measurement
77 * Parking management system
78 * Object proximity and presence detection
79 * Intelligent trash can management system
80 * Robot obstacle avoidance
81 * Automatic control
82 * Sewer
83
84 == 1.6 Pin mapping and power on ==
85
86
87 [[image:1654827332142-133.png]]
88
89
90
91 = 2. Configure LLDS12 to connect to LoRaWAN network =
92
93 == 2.1 How it works ==
94
95 (((
96 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
97 )))
98
99 (((
100 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
101 )))
102
103
104 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
105
106 (((
107 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
108 )))
109
110 (((
111 [[image:1654827857527-556.png]]
112 )))
113
114 (((
115 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 )))
117
118 (((
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
120 )))
121
122 (((
123 Each LSPH01 is shipped with a sticker with the default device EUI as below:
124 )))
125
126 [[image:image-20220607170145-1.jpeg]]
127
128
129
130 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
131
132
133 **Register the device**
134
135
136 [[image:1654592600093-601.png]]
137
138
139 **Add APP EUI and DEV EUI**
140
141 [[image:1654592619856-881.png]]
142
143
144 **Add APP EUI in the application**
145
146 [[image:1654592632656-512.png]]
147
148
149
150 **Add APP KEY**
151
152 [[image:1654592653453-934.png]]
153
154
155 (% style="color:blue" %)**Step 2**(%%): Power on LSPH01
156
157
158 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
159
160 [[image:image-20220607170442-2.png]]
161
162
163 (((
164 (% style="color:blue" %)**Step 3**(%%)**:** The LSPH01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
165 )))
166
167 [[image:1654592697690-910.png]]
168
169
170
171 == 2.3 ​Uplink Payload ==
172
173 (((
174 LSPH01 will uplink payload via LoRaWAN with below payload format: 
175 )))
176
177 (((
178 Uplink payload includes in total 11 bytes.
179 )))
180
181 (((
182 Normal uplink payload:
183 )))
184
185 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
186 |=(% style="width: 62.5px;" %)(((
187 **Size (bytes)**
188 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
189 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
190 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
191
192 [[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
193 )))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
194 [[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
195 )))|Reserve|(((
196 [[Message Type>>||anchor="H2.3.6MessageType"]]
197 )))
198
199 [[image:1654592721645-318.png]]
200
201
202
203 === 2.3.1 Battery Info ===
204
205
206 Check the battery voltage for LSPH01.
207
208 Ex1: 0x0B45 = 2885mV
209
210 Ex2: 0x0B49 = 2889mV
211
212
213
214 === 2.3.2 DS18B20 Temperature sensor ===
215
216 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
217
218
219 **Example**:
220
221 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
222
223 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
224
225
226
227 === 2.3.3 Soil pH ===
228
229 Range: 0 ~~ 14 pH
230
231 **Example:**
232
233 (% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
234
235
236
237 === 2.3.4 Soil Temperature ===
238
239 Get Soil Temperature 
240
241
242 **Example**:
243
244 If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
245
246 If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
247
248
249
250 === 2.3.5 Interrupt Pin ===
251
252 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
253
254
255 **Example:**
256
257 0x00: Normal uplink packet.
258
259 0x01: Interrupt Uplink Packet.
260
261
262
263 === 2.3.6 Message Type ===
264
265 (((
266 For a normal uplink payload, the message type is always 0x01.
267 )))
268
269 (((
270 Valid Message Type:
271 )))
272
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
275 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
276 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
277 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
278 |(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
279
280 === 2.3.7 Decode payload in The Things Network ===
281
282 While using TTN network, you can add the payload format to decode the payload.
283
284
285 [[image:1654592762713-715.png]]
286
287 (((
288 The payload decoder function for TTN is here:
289 )))
290
291 (((
292 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
293 )))
294
295
296
297 == 2.4 Uplink Interval ==
298
299 The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
300
301
302
303 == 2.5 ​Show Data in DataCake IoT Server ==
304
305 (((
306 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
307 )))
308
309 (((
310
311 )))
312
313 (((
314 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
315 )))
316
317 (((
318 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
319 )))
320
321
322 [[image:1654592790040-760.png]]
323
324
325 [[image:1654592800389-571.png]]
326
327
328 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
329
330 (% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
331
332 [[image:1654592819047-535.png]]
333
334
335
336 [[image:1654592833877-762.png]]
337
338
339 [[image:1654592856403-259.png]]
340
341
342 (((
343 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
344 )))
345
346 (((
347 Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
348 )))
349
350
351 [[image:1654592878525-845.png]]
352
353 [[image:1654592892967-474.png]]
354
355
356 [[image:1654592905354-123.png]]
357
358
359 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
360
361
362 [[image:1654592917530-261.png]]
363
364
365
366 == 2.6  Frequency Plans ==
367
368 (((
369 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
370 )))
371
372
373 === 2.6.1  EU863-870 (EU868) ===
374
375 (((
376 (% style="color:blue" %)**Uplink:**
377 )))
378
379 (((
380 868.1 - SF7BW125 to SF12BW125
381 )))
382
383 (((
384 868.3 - SF7BW125 to SF12BW125 and SF7BW250
385 )))
386
387 (((
388 868.5 - SF7BW125 to SF12BW125
389 )))
390
391 (((
392 867.1 - SF7BW125 to SF12BW125
393 )))
394
395 (((
396 867.3 - SF7BW125 to SF12BW125
397 )))
398
399 (((
400 867.5 - SF7BW125 to SF12BW125
401 )))
402
403 (((
404 867.7 - SF7BW125 to SF12BW125
405 )))
406
407 (((
408 867.9 - SF7BW125 to SF12BW125
409 )))
410
411 (((
412 868.8 - FSK
413 )))
414
415 (((
416
417 )))
418
419 (((
420 (% style="color:blue" %)**Downlink:**
421 )))
422
423 (((
424 Uplink channels 1-9 (RX1)
425 )))
426
427 (((
428 869.525 - SF9BW125 (RX2 downlink only)
429 )))
430
431
432
433 === 2.6.2  US902-928(US915) ===
434
435 (((
436 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
437 )))
438
439 (((
440 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
441 )))
442
443 (((
444 After Join success, the end node will switch to the correct sub band by:
445 )))
446
447 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
448 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
449
450
451 === 2.6.3 CN470-510 (CN470) ===
452
453 (((
454 Used in China, Default use CHE=1
455 )))
456
457 (((
458 (% style="color:blue" %)**Uplink:**
459 )))
460
461 (((
462 486.3 - SF7BW125 to SF12BW125
463 )))
464
465 (((
466 486.5 - SF7BW125 to SF12BW125
467 )))
468
469 (((
470 486.7 - SF7BW125 to SF12BW125
471 )))
472
473 (((
474 486.9 - SF7BW125 to SF12BW125
475 )))
476
477 (((
478 487.1 - SF7BW125 to SF12BW125
479 )))
480
481 (((
482 487.3 - SF7BW125 to SF12BW125
483 )))
484
485 (((
486 487.5 - SF7BW125 to SF12BW125
487 )))
488
489 (((
490 487.7 - SF7BW125 to SF12BW125
491 )))
492
493 (((
494
495 )))
496
497 (((
498 (% style="color:blue" %)**Downlink:**
499 )))
500
501 (((
502 506.7 - SF7BW125 to SF12BW125
503 )))
504
505 (((
506 506.9 - SF7BW125 to SF12BW125
507 )))
508
509 (((
510 507.1 - SF7BW125 to SF12BW125
511 )))
512
513 (((
514 507.3 - SF7BW125 to SF12BW125
515 )))
516
517 (((
518 507.5 - SF7BW125 to SF12BW125
519 )))
520
521 (((
522 507.7 - SF7BW125 to SF12BW125
523 )))
524
525 (((
526 507.9 - SF7BW125 to SF12BW125
527 )))
528
529 (((
530 508.1 - SF7BW125 to SF12BW125
531 )))
532
533 (((
534 505.3 - SF12BW125 (RX2 downlink only)
535 )))
536
537
538
539
540 === 2.6.4 AU915-928(AU915) ===
541
542 (((
543 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
544 )))
545
546 (((
547 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
548 )))
549
550 (((
551
552 )))
553
554 (((
555 After Join success, the end node will switch to the correct sub band by:
556 )))
557
558 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
559 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
560
561 === 2.6.5 AS920-923 & AS923-925 (AS923) ===
562
563 (((
564 (% style="color:blue" %)**Default Uplink channel:**
565 )))
566
567 (((
568 923.2 - SF7BW125 to SF10BW125
569 )))
570
571 (((
572 923.4 - SF7BW125 to SF10BW125
573 )))
574
575 (((
576
577 )))
578
579 (((
580 (% style="color:blue" %)**Additional Uplink Channel**:
581 )))
582
583 (((
584 (OTAA mode, channel added by JoinAccept message)
585 )))
586
587 (((
588
589 )))
590
591 (((
592 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
593 )))
594
595 (((
596 922.2 - SF7BW125 to SF10BW125
597 )))
598
599 (((
600 922.4 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604 922.6 - SF7BW125 to SF10BW125
605 )))
606
607 (((
608 922.8 - SF7BW125 to SF10BW125
609 )))
610
611 (((
612 923.0 - SF7BW125 to SF10BW125
613 )))
614
615 (((
616 922.0 - SF7BW125 to SF10BW125
617 )))
618
619 (((
620
621 )))
622
623 (((
624 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
625 )))
626
627 (((
628 923.6 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 923.8 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 924.0 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 924.2 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 924.4 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648 924.6 - SF7BW125 to SF10BW125
649 )))
650
651 (((
652
653 )))
654
655 (((
656 (% style="color:blue" %)**Downlink:**
657 )))
658
659 (((
660 Uplink channels 1-8 (RX1)
661 )))
662
663 (((
664 923.2 - SF10BW125 (RX2)
665 )))
666
667
668
669
670 === 2.6.6 KR920-923 (KR920) ===
671
672 (((
673 (% style="color:blue" %)**Default channel:**
674 )))
675
676 (((
677 922.1 - SF7BW125 to SF12BW125
678 )))
679
680 (((
681 922.3 - SF7BW125 to SF12BW125
682 )))
683
684 (((
685 922.5 - SF7BW125 to SF12BW125
686 )))
687
688 (((
689
690 )))
691
692 (((
693 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
694 )))
695
696 (((
697 922.1 - SF7BW125 to SF12BW125
698 )))
699
700 (((
701 922.3 - SF7BW125 to SF12BW125
702 )))
703
704 (((
705 922.5 - SF7BW125 to SF12BW125
706 )))
707
708 (((
709 922.7 - SF7BW125 to SF12BW125
710 )))
711
712 (((
713 922.9 - SF7BW125 to SF12BW125
714 )))
715
716 (((
717 923.1 - SF7BW125 to SF12BW125
718 )))
719
720 (((
721 923.3 - SF7BW125 to SF12BW125
722 )))
723
724 (((
725
726 )))
727
728 (((
729 (% style="color:blue" %)**Downlink:**
730 )))
731
732 (((
733 Uplink channels 1-7(RX1)
734 )))
735
736 (((
737 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
738 )))
739
740
741
742
743 === 2.6.7 IN865-867 (IN865) ===
744
745 (((
746 (% style="color:blue" %)**Uplink:**
747 )))
748
749 (((
750 865.0625 - SF7BW125 to SF12BW125
751 )))
752
753 (((
754 865.4025 - SF7BW125 to SF12BW125
755 )))
756
757 (((
758 865.9850 - SF7BW125 to SF12BW125
759 )))
760
761 (((
762
763 )))
764
765 (((
766 (% style="color:blue" %)**Downlink:**
767 )))
768
769 (((
770 Uplink channels 1-3 (RX1)
771 )))
772
773 (((
774 866.550 - SF10BW125 (RX2)
775 )))
776
777
778
779
780 == 2.7  LED Indicator ==
781
782 The LLDS12 has an internal LED which is to show the status of different state.
783
784 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
785 * Blink once when device transmit a packet.
786
787
788
789 == 2.8  ​Firmware Change Log ==
790
791
792 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
793
794
795 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
796
797
798
799 = 3.  LiDAR ToF Measurement =
800
801 == 3.1 Principle of Distance Measurement ==
802
803 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
804
805 [[image:1654831757579-263.png]]
806
807
808
809 == 3.2 Distance Measurement Characteristics ==
810
811 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
812
813 [[image:1654831774373-275.png]]
814
815
816 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
817
818 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
819
820 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
821
822
823 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
824
825
826 [[image:1654831797521-720.png]]
827
828
829 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
830
831 [[image:1654831810009-716.png]]
832
833
834 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
835
836
837
838 == 3.3 Notice of usage: ==
839
840 Possible invalid /wrong reading for LiDAR ToF tech:
841
842 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
843 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
844 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
845 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
846
847 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
848
849 (((
850 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
851 )))
852
853 * (((
854 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
855 )))
856 * (((
857 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
858 )))
859
860 (((
861
862
863 There are two kinds of commands to configure LLDS12, they are:
864 )))
865
866 * (((
867 (% style="color:#4f81bd" %)** General Commands**.
868 )))
869
870 (((
871 These commands are to configure:
872 )))
873
874 * (((
875 General system settings like: uplink interval.
876 )))
877 * (((
878 LoRaWAN protocol & radio related command.
879 )))
880
881 (((
882 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
883 )))
884
885 (((
886
887 )))
888
889 * (((
890 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
891 )))
892
893 (((
894 These commands only valid for LLDS12, as below:
895 )))
896
897
898
899 == 4.1  Set Transmit Interval Time ==
900
901 Feature: Change LoRaWAN End Node Transmit Interval.
902
903 (% style="color:#037691" %)**AT Command: AT+TDC**
904
905 [[image:image-20220607171554-8.png]]
906
907
908
909 (((
910 (% style="color:#037691" %)**Downlink Command: 0x01**
911 )))
912
913 (((
914 Format: Command Code (0x01) followed by 3 bytes time value.
915 )))
916
917 (((
918 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
919 )))
920
921 * (((
922 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
923 )))
924 * (((
925 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
926
927
928
929 )))
930
931 == 4.2  Set Interrupt Mode ==
932
933 Feature, Set Interrupt mode for GPIO_EXIT.
934
935 (% style="color:#037691" %)**AT Command: AT+INTMOD**
936
937 [[image:image-20220610105806-2.png]]
938
939
940
941
942 (((
943 (% style="color:#037691" %)**Downlink Command: 0x06**
944 )))
945
946 (((
947 Format: Command Code (0x06) followed by 3 bytes.
948 )))
949
950 (((
951 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
952 )))
953
954 * (((
955 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
956 )))
957 * (((
958 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
959 )))
960
961 == 4.3  Get Firmware Version Info ==
962
963 Feature: use downlink to get firmware version.
964
965 (% style="color:#037691" %)**Downlink Command: 0x26**
966
967 [[image:image-20220607171917-10.png]]
968
969 * Reply to the confirmation package: 26 01
970 * Reply to non-confirmed packet: 26 00
971
972 Device will send an uplink after got this downlink command. With below payload:
973
974 Configures info payload:
975
976 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
977 |=(((
978 **Size(bytes)**
979 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
980 |**Value**|Software Type|(((
981 Frequency
982
983 Band
984 )))|Sub-band|(((
985 Firmware
986
987 Version
988 )))|Sensor Type|Reserve|(((
989 [[Message Type>>||anchor="H2.3.6MessageType"]]
990 Always 0x02
991 )))
992
993 **Software Type**: Always 0x03 for LLDS12
994
995
996 **Frequency Band**:
997
998 *0x01: EU868
999
1000 *0x02: US915
1001
1002 *0x03: IN865
1003
1004 *0x04: AU915
1005
1006 *0x05: KZ865
1007
1008 *0x06: RU864
1009
1010 *0x07: AS923
1011
1012 *0x08: AS923-1
1013
1014 *0x09: AS923-2
1015
1016 *0xa0: AS923-3
1017
1018
1019 **Sub-Band**: value 0x00 ~~ 0x08
1020
1021
1022 **Firmware Version**: 0x0100, Means: v1.0.0 version
1023
1024
1025 **Sensor Type**:
1026
1027 0x01: LSE01
1028
1029 0x02: LDDS75
1030
1031 0x03: LDDS20
1032
1033 0x04: LLMS01
1034
1035 0x05: LSPH01
1036
1037 0x06: LSNPK01
1038
1039 0x07: LLDS12
1040
1041
1042
1043 = 5.  Battery & How to replace =
1044
1045 == 5.1  Battery Type ==
1046
1047 (((
1048 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1049 )))
1050
1051 (((
1052 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1053 )))
1054
1055 [[image:1654593587246-335.png]]
1056
1057
1058 Minimum Working Voltage for the LLDS12:
1059
1060 LLDS12:  2.45v ~~ 3.6v
1061
1062
1063
1064 == 5.2  Replace Battery ==
1065
1066 (((
1067 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1068 )))
1069
1070 (((
1071 And make sure the positive and negative pins match.
1072 )))
1073
1074
1075
1076 == 5.3  Power Consumption Analyze ==
1077
1078 (((
1079 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1080 )))
1081
1082 (((
1083 Instruction to use as below:
1084 )))
1085
1086
1087 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1088
1089 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1090
1091
1092 **Step 2**: Open it and choose
1093
1094 * Product Model
1095 * Uplink Interval
1096 * Working Mode
1097
1098 And the Life expectation in difference case will be shown on the right.
1099
1100 [[image:1654593605679-189.png]]
1101
1102
1103 The battery related documents as below:
1104
1105 * (((
1106 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1107 )))
1108 * (((
1109 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1110 )))
1111 * (((
1112 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1113 )))
1114
1115 [[image:image-20220607172042-11.png]]
1116
1117
1118
1119 === 5.3.1  ​Battery Note ===
1120
1121 (((
1122 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1123 )))
1124
1125
1126
1127 === ​5.3.2  Replace the battery ===
1128
1129 (((
1130 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1131 )))
1132
1133 (((
1134 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1135 )))
1136
1137
1138
1139 = 6.  Use AT Command =
1140
1141 == 6.1  Access AT Commands ==
1142
1143 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1144
1145 [[image:1654593668970-604.png]]
1146
1147 **Connection:**
1148
1149 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1150
1151 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1152
1153 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1154
1155
1156 (((
1157 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1158 )))
1159
1160
1161 [[image:1654593712276-618.png]]
1162
1163 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1164
1165
1166 = 7.  FAQ =
1167
1168 == 7.1  How to change the LoRa Frequency Bands/Region ==
1169
1170 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1171 When downloading the images, choose the required image file for download. ​
1172
1173
1174 = 8.  Trouble Shooting =
1175
1176 == 8.1  AT Commands input doesn’t work ==
1177
1178
1179 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1180
1181
1182 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1183
1184
1185 (((
1186 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1187 )))
1188
1189 (((
1190 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1191 )))
1192
1193 (((
1194
1195 )))
1196
1197 (((
1198 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1199 )))
1200
1201 (((
1202 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1203 )))
1204
1205
1206
1207 = 9.  Order Info =
1208
1209
1210 Part Number: (% style="color:blue" %)**LLDS12-XX**
1211
1212
1213 (% style="color:blue" %)**XX**(%%): The default frequency band
1214
1215 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1216 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1217 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1218 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1219 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1220 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1221 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1222 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1223
1224 = 10. ​ Packing Info =
1225
1226
1227 **Package Includes**:
1228
1229 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1230
1231 **Dimension and weight**:
1232
1233 * Device Size: cm
1234 * Device Weight: g
1235 * Package Size / pcs : cm
1236 * Weight / pcs : g
1237
1238 = 11.  ​Support =
1239
1240 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1241 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1242
1243
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0