Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95
96 == 1.6  Pin mapping and power on ==
97
98
99 [[image:1654847583902-256.png]]
100
101
102 = 2.  Configure LDDS75 to connect to LoRaWAN network =
103
104 == 2.1  How it works ==
105
106 (((
107 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
108 )))
109
110 (((
111 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
112 )))
113
114
115 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
116
117 (((
118 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
119 )))
120
121 (((
122 [[image:1654848616367-242.png]]
123 )))
124
125 (((
126 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
127 )))
128
129 (((
130 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
131 )))
132
133 (((
134 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
135 )))
136
137 [[image:image-20220607170145-1.jpeg]]
138
139
140 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
141
142 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143
144
145 **Register the device**
146
147
148 [[image:1654592600093-601.png]]
149
150
151
152 **Add APP EUI and DEV EUI**
153
154 [[image:1654592619856-881.png]]
155
156
157
158 **Add APP EUI in the application**
159
160 [[image:1654592632656-512.png]]
161
162
163
164 **Add APP KEY**
165
166 [[image:1654592653453-934.png]]
167
168
169 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170
171
172 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
173
174 [[image:image-20220607170442-2.png]]
175
176
177 (((
178 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 )))
180
181 [[image:1654833501679-968.png]]
182
183
184
185 == 2.3  ​Uplink Payload ==
186
187 (((
188 LLDS12 will uplink payload via LoRaWAN with below payload format: 
189 )))
190
191 (((
192 Uplink payload includes in total 11 bytes.
193 )))
194
195 (((
196
197 )))
198
199 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 |=(% style="width: 62.5px;" %)(((
201 **Size (bytes)**
202 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 )))
210
211 [[image:1654833689380-972.png]]
212
213
214
215 === 2.3.1  Battery Info ===
216
217
218 Check the battery voltage for LLDS12.
219
220 Ex1: 0x0B45 = 2885mV
221
222 Ex2: 0x0B49 = 2889mV
223
224
225
226 === 2.3.2  DS18B20 Temperature sensor ===
227
228 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
229
230
231 **Example**:
232
233 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
234
235 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
236
237
238
239 === 2.3.3  Distance ===
240
241 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
242
243
244 **Example**:
245
246 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247
248
249
250 === 2.3.4  Distance signal strength ===
251
252 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253
254
255 **Example**:
256
257 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258
259 Customers can judge whether they need to adjust the environment based on the signal strength.
260
261
262
263 === 2.3.5  Interrupt Pin ===
264
265 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
266
267 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268
269 **Example:**
270
271 0x00: Normal uplink packet.
272
273 0x01: Interrupt Uplink Packet.
274
275
276
277 === 2.3.6  LiDAR temp ===
278
279 Characterize the internal temperature value of the sensor.
280
281 **Example: **
282 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
284
285
286
287 === 2.3.7  Message Type ===
288
289 (((
290 For a normal uplink payload, the message type is always 0x01.
291 )))
292
293 (((
294 Valid Message Type:
295 )))
296
297
298 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
302
303 === 2.3.8  Decode payload in The Things Network ===
304
305 While using TTN network, you can add the payload format to decode the payload.
306
307
308 [[image:1654592762713-715.png]]
309
310 (((
311 The payload decoder function for TTN is here:
312 )))
313
314 (((
315 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
316 )))
317
318
319
320 == 2.4  Uplink Interval ==
321
322 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
323
324
325
326 == 2.5  ​Show Data in DataCake IoT Server ==
327
328 (((
329 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
330 )))
331
332 (((
333
334 )))
335
336 (((
337 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
338 )))
339
340 (((
341 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
342 )))
343
344
345 [[image:1654592790040-760.png]]
346
347
348 [[image:1654592800389-571.png]]
349
350
351 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
352
353 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
354
355 [[image:1654832691989-514.png]]
356
357
358 [[image:1654592833877-762.png]]
359
360
361 [[image:1654832740634-933.png]]
362
363
364
365 (((
366 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
367 )))
368
369 (((
370
371 )))
372
373 [[image:1654833065139-942.png]]
374
375
376
377 [[image:1654833092678-390.png]]
378
379
380
381 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
382
383 [[image:1654833163048-332.png]]
384
385
386
387 == 2.6  Frequency Plans ==
388
389 (((
390 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
391 )))
392
393
394 === 2.6.1  EU863-870 (EU868) ===
395
396 (((
397 (% style="color:blue" %)**Uplink:**
398 )))
399
400 (((
401 868.1 - SF7BW125 to SF12BW125
402 )))
403
404 (((
405 868.3 - SF7BW125 to SF12BW125 and SF7BW250
406 )))
407
408 (((
409 868.5 - SF7BW125 to SF12BW125
410 )))
411
412 (((
413 867.1 - SF7BW125 to SF12BW125
414 )))
415
416 (((
417 867.3 - SF7BW125 to SF12BW125
418 )))
419
420 (((
421 867.5 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.7 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.9 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 868.8 - FSK
434 )))
435
436 (((
437
438 )))
439
440 (((
441 (% style="color:blue" %)**Downlink:**
442 )))
443
444 (((
445 Uplink channels 1-9 (RX1)
446 )))
447
448 (((
449 869.525 - SF9BW125 (RX2 downlink only)
450 )))
451
452
453
454 === 2.6.2  US902-928(US915) ===
455
456 (((
457 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
458 )))
459
460 (((
461 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
462 )))
463
464 (((
465 After Join success, the end node will switch to the correct sub band by:
466 )))
467
468 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
469 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
470
471 === 2.6.3  CN470-510 (CN470) ===
472
473 (((
474 Used in China, Default use CHE=1
475 )))
476
477 (((
478 (% style="color:blue" %)**Uplink:**
479 )))
480
481 (((
482 486.3 - SF7BW125 to SF12BW125
483 )))
484
485 (((
486 486.5 - SF7BW125 to SF12BW125
487 )))
488
489 (((
490 486.7 - SF7BW125 to SF12BW125
491 )))
492
493 (((
494 486.9 - SF7BW125 to SF12BW125
495 )))
496
497 (((
498 487.1 - SF7BW125 to SF12BW125
499 )))
500
501 (((
502 487.3 - SF7BW125 to SF12BW125
503 )))
504
505 (((
506 487.5 - SF7BW125 to SF12BW125
507 )))
508
509 (((
510 487.7 - SF7BW125 to SF12BW125
511 )))
512
513 (((
514
515 )))
516
517 (((
518 (% style="color:blue" %)**Downlink:**
519 )))
520
521 (((
522 506.7 - SF7BW125 to SF12BW125
523 )))
524
525 (((
526 506.9 - SF7BW125 to SF12BW125
527 )))
528
529 (((
530 507.1 - SF7BW125 to SF12BW125
531 )))
532
533 (((
534 507.3 - SF7BW125 to SF12BW125
535 )))
536
537 (((
538 507.5 - SF7BW125 to SF12BW125
539 )))
540
541 (((
542 507.7 - SF7BW125 to SF12BW125
543 )))
544
545 (((
546 507.9 - SF7BW125 to SF12BW125
547 )))
548
549 (((
550 508.1 - SF7BW125 to SF12BW125
551 )))
552
553 (((
554 505.3 - SF12BW125 (RX2 downlink only)
555 )))
556
557
558
559
560 === 2.6.4  AU915-928(AU915) ===
561
562 (((
563 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
564 )))
565
566 (((
567 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
568 )))
569
570 (((
571
572 )))
573
574 (((
575 After Join success, the end node will switch to the correct sub band by:
576 )))
577
578 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
579 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
580
581 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
582
583 (((
584 (% style="color:blue" %)**Default Uplink channel:**
585 )))
586
587 (((
588 923.2 - SF7BW125 to SF10BW125
589 )))
590
591 (((
592 923.4 - SF7BW125 to SF10BW125
593 )))
594
595 (((
596
597 )))
598
599 (((
600 (% style="color:blue" %)**Additional Uplink Channel**:
601 )))
602
603 (((
604 (OTAA mode, channel added by JoinAccept message)
605 )))
606
607 (((
608
609 )))
610
611 (((
612 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
613 )))
614
615 (((
616 922.2 - SF7BW125 to SF10BW125
617 )))
618
619 (((
620 922.4 - SF7BW125 to SF10BW125
621 )))
622
623 (((
624 922.6 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 922.8 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 923.0 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.0 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640
641 )))
642
643 (((
644 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
645 )))
646
647 (((
648 923.6 - SF7BW125 to SF10BW125
649 )))
650
651 (((
652 923.8 - SF7BW125 to SF10BW125
653 )))
654
655 (((
656 924.0 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 924.2 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 924.4 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.6 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672
673 )))
674
675 (((
676 (% style="color:blue" %)**Downlink:**
677 )))
678
679 (((
680 Uplink channels 1-8 (RX1)
681 )))
682
683 (((
684 923.2 - SF10BW125 (RX2)
685 )))
686
687
688
689
690 === 2.6.6  KR920-923 (KR920) ===
691
692 (((
693 (% style="color:blue" %)**Default channel:**
694 )))
695
696 (((
697 922.1 - SF7BW125 to SF12BW125
698 )))
699
700 (((
701 922.3 - SF7BW125 to SF12BW125
702 )))
703
704 (((
705 922.5 - SF7BW125 to SF12BW125
706 )))
707
708 (((
709
710 )))
711
712 (((
713 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
714 )))
715
716 (((
717 922.1 - SF7BW125 to SF12BW125
718 )))
719
720 (((
721 922.3 - SF7BW125 to SF12BW125
722 )))
723
724 (((
725 922.5 - SF7BW125 to SF12BW125
726 )))
727
728 (((
729 922.7 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 922.9 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 923.1 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 923.3 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745
746 )))
747
748 (((
749 (% style="color:blue" %)**Downlink:**
750 )))
751
752 (((
753 Uplink channels 1-7(RX1)
754 )))
755
756 (((
757 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
758 )))
759
760
761
762
763 === 2.6.7  IN865-867 (IN865) ===
764
765 (((
766 (% style="color:blue" %)**Uplink:**
767 )))
768
769 (((
770 865.0625 - SF7BW125 to SF12BW125
771 )))
772
773 (((
774 865.4025 - SF7BW125 to SF12BW125
775 )))
776
777 (((
778 865.9850 - SF7BW125 to SF12BW125
779 )))
780
781 (((
782
783 )))
784
785 (((
786 (% style="color:blue" %)**Downlink:**
787 )))
788
789 (((
790 Uplink channels 1-3 (RX1)
791 )))
792
793 (((
794 866.550 - SF10BW125 (RX2)
795 )))
796
797
798
799
800 == 2.7  LED Indicator ==
801
802 The LLDS12 has an internal LED which is to show the status of different state.
803
804 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
805 * Blink once when device transmit a packet.
806
807 == 2.8  ​Firmware Change Log ==
808
809
810 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
811
812
813 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
814
815
816
817 = 3.  LiDAR ToF Measurement =
818
819 == 3.1 Principle of Distance Measurement ==
820
821 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822
823 [[image:1654831757579-263.png]]
824
825
826
827 == 3.2 Distance Measurement Characteristics ==
828
829 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
830
831 [[image:1654831774373-275.png]]
832
833
834 (((
835 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 )))
837
838 (((
839 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
840 )))
841
842 (((
843 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
844 )))
845
846
847 (((
848 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
849 )))
850
851
852 [[image:1654831797521-720.png]]
853
854
855 (((
856 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
857 )))
858
859 [[image:1654831810009-716.png]]
860
861
862 (((
863 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
864 )))
865
866
867
868 == 3.3 Notice of usage: ==
869
870 Possible invalid /wrong reading for LiDAR ToF tech:
871
872 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
873 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
874 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
875 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
876
877 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
878
879 (((
880 (((
881 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
882 )))
883 )))
884
885 * (((
886 (((
887 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
888 )))
889 )))
890 * (((
891 (((
892 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
893 )))
894 )))
895
896 (((
897 (((
898
899 )))
900
901 (((
902 There are two kinds of commands to configure LLDS12, they are:
903 )))
904 )))
905
906 * (((
907 (((
908 (% style="color:#4f81bd" %)** General Commands**.
909 )))
910 )))
911
912 (((
913 (((
914 These commands are to configure:
915 )))
916 )))
917
918 * (((
919 (((
920 General system settings like: uplink interval.
921 )))
922 )))
923 * (((
924 (((
925 LoRaWAN protocol & radio related command.
926 )))
927 )))
928
929 (((
930 (((
931 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
932 )))
933 )))
934
935 (((
936 (((
937
938 )))
939 )))
940
941 * (((
942 (((
943 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
944 )))
945 )))
946
947 (((
948 (((
949 These commands only valid for LLDS12, as below:
950 )))
951 )))
952
953
954
955 == 4.1  Set Transmit Interval Time ==
956
957 Feature: Change LoRaWAN End Node Transmit Interval.
958
959 (% style="color:#037691" %)**AT Command: AT+TDC**
960
961 [[image:image-20220607171554-8.png]]
962
963
964 (((
965 (% style="color:#037691" %)**Downlink Command: 0x01**
966 )))
967
968 (((
969 Format: Command Code (0x01) followed by 3 bytes time value.
970 )))
971
972 (((
973 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
974 )))
975
976 * (((
977 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
978 )))
979 * (((
980 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
981 )))
982
983 == 4.2  Set Interrupt Mode ==
984
985 Feature, Set Interrupt mode for GPIO_EXIT.
986
987 (% style="color:#037691" %)**AT Command: AT+INTMOD**
988
989 [[image:image-20220610105806-2.png]]
990
991
992 (((
993 (% style="color:#037691" %)**Downlink Command: 0x06**
994 )))
995
996 (((
997 Format: Command Code (0x06) followed by 3 bytes.
998 )))
999
1000 (((
1001 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1002 )))
1003
1004 * (((
1005 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1006 )))
1007 * (((
1008 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1009 )))
1010
1011 == 4.3  Get Firmware Version Info ==
1012
1013 Feature: use downlink to get firmware version.
1014
1015 (% style="color:#037691" %)**Downlink Command: 0x26**
1016
1017 [[image:image-20220607171917-10.png]]
1018
1019 * Reply to the confirmation package: 26 01
1020 * Reply to non-confirmed packet: 26 00
1021
1022 Device will send an uplink after got this downlink command. With below payload:
1023
1024 Configures info payload:
1025
1026 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1027 |=(((
1028 **Size(bytes)**
1029 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1030 |**Value**|Software Type|(((
1031 Frequency
1032
1033 Band
1034 )))|Sub-band|(((
1035 Firmware
1036
1037 Version
1038 )))|Sensor Type|Reserve|(((
1039 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1040 Always 0x02
1041 )))
1042
1043 **Software Type**: Always 0x03 for LLDS12
1044
1045
1046 **Frequency Band**:
1047
1048 *0x01: EU868
1049
1050 *0x02: US915
1051
1052 *0x03: IN865
1053
1054 *0x04: AU915
1055
1056 *0x05: KZ865
1057
1058 *0x06: RU864
1059
1060 *0x07: AS923
1061
1062 *0x08: AS923-1
1063
1064 *0x09: AS923-2
1065
1066 *0xa0: AS923-3
1067
1068
1069 **Sub-Band**: value 0x00 ~~ 0x08
1070
1071
1072 **Firmware Version**: 0x0100, Means: v1.0.0 version
1073
1074
1075 **Sensor Type**:
1076
1077 0x01: LSE01
1078
1079 0x02: LDDS75
1080
1081 0x03: LDDS20
1082
1083 0x04: LLMS01
1084
1085 0x05: LSPH01
1086
1087 0x06: LSNPK01
1088
1089 0x07: LLDS12
1090
1091
1092
1093 = 5.  Battery & How to replace =
1094
1095 == 5.1  Battery Type ==
1096
1097 (((
1098 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1099 )))
1100
1101 (((
1102 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1103 )))
1104
1105 [[image:1654593587246-335.png]]
1106
1107
1108 Minimum Working Voltage for the LLDS12:
1109
1110 LLDS12:  2.45v ~~ 3.6v
1111
1112
1113
1114 == 5.2  Replace Battery ==
1115
1116 (((
1117 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1118 )))
1119
1120 (((
1121 And make sure the positive and negative pins match.
1122 )))
1123
1124
1125
1126 == 5.3  Power Consumption Analyze ==
1127
1128 (((
1129 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1130 )))
1131
1132 (((
1133 Instruction to use as below:
1134 )))
1135
1136
1137 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1138
1139 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1140
1141
1142 **Step 2**: Open it and choose
1143
1144 * Product Model
1145 * Uplink Interval
1146 * Working Mode
1147
1148 And the Life expectation in difference case will be shown on the right.
1149
1150 [[image:1654593605679-189.png]]
1151
1152
1153 The battery related documents as below:
1154
1155 * (((
1156 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1157 )))
1158 * (((
1159 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1160 )))
1161 * (((
1162 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1163 )))
1164
1165 [[image:image-20220607172042-11.png]]
1166
1167
1168
1169 === 5.3.1  ​Battery Note ===
1170
1171 (((
1172 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1173 )))
1174
1175
1176
1177 === ​5.3.2  Replace the battery ===
1178
1179 (((
1180 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1181 )))
1182
1183 (((
1184 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1185 )))
1186
1187
1188
1189 = 6.  Use AT Command =
1190
1191 == 6.1  Access AT Commands ==
1192
1193 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1194
1195 [[image:1654593668970-604.png]]
1196
1197 **Connection:**
1198
1199 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1200
1201 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1202
1203 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1204
1205
1206 (((
1207 (((
1208 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1209 )))
1210
1211 (((
1212 LLDS12 will output system info once power on as below:
1213 )))
1214 )))
1215
1216
1217 [[image:1654593712276-618.png]]
1218
1219 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1220
1221
1222 = 7.  FAQ =
1223
1224 == 7.1  How to change the LoRa Frequency Bands/Region ==
1225
1226 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1227 When downloading the images, choose the required image file for download. ​
1228
1229
1230 = 8.  Trouble Shooting =
1231
1232 == 8.1  AT Commands input doesn’t work ==
1233
1234
1235 (((
1236 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1237 )))
1238
1239
1240 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1241
1242
1243 (((
1244 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1245 )))
1246
1247 (((
1248 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1249 )))
1250
1251 (((
1252
1253 )))
1254
1255 (((
1256 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1257 )))
1258
1259 (((
1260 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1261 )))
1262
1263
1264
1265 = 9.  Order Info =
1266
1267
1268 Part Number: (% style="color:blue" %)**LLDS12-XX**
1269
1270
1271 (% style="color:blue" %)**XX**(%%): The default frequency band
1272
1273 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1274 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1275 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1276 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1277 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1278 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1279 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1280 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1281
1282 = 10. ​ Packing Info =
1283
1284
1285 **Package Includes**:
1286
1287 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1288
1289 **Dimension and weight**:
1290
1291 * Device Size: cm
1292 * Device Weight: g
1293 * Package Size / pcs : cm
1294 * Weight / pcs : g
1295
1296 = 11.  ​Support =
1297
1298 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1299 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0