Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14
15 = 1.  Introduction =
16
17 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
18
19 (((
20
21
22 (((
23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 )))
25
26 (((
27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 )))
29
30 (((
31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 )))
33
34 (((
35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 )))
37
38 (((
39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 )))
41
42 (((
43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 )))
45 )))
46
47
48 [[image:1654826306458-414.png]]
49
50
51
52 == ​1.2  Features ==
53
54 * LoRaWAN 1.0.3 Class A
55 * Ultra-low power consumption
56 * Laser technology for distance detection
57 * Operating Range - 0.1m~~12m①
58 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 * Monitor Battery Level
60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 * AT Commands to change parameters
62 * Uplink on periodically
63 * Downlink to change configure
64 * 8500mAh Battery for long term use
65
66
67
68
69 == 1.3  Probe Specification ==
70
71 * Storage temperature :-20℃~~75℃
72 * Operating temperature - -20℃~~60℃
73 * Operating Range - 0.1m~~12m①
74 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution - 5mm
76 * Ambient light immunity - 70klux
77 * Enclosure rating - IP65
78 * Light source - LED
79 * Central wavelength - 850nm
80 * FOV - 3.6°
81 * Material of enclosure - ABS+PC
82 * Wire length - 25cm
83
84
85
86
87 == 1.4  Probe Dimension ==
88
89
90 [[image:1654827224480-952.png]]
91
92
93 == 1.5 ​ Applications ==
94
95 * Horizontal distance measurement
96 * Parking management system
97 * Object proximity and presence detection
98 * Intelligent trash can management system
99 * Robot obstacle avoidance
100 * Automatic control
101 * Sewer
102
103
104
105
106 == 1.6  Pin mapping and power on ==
107
108
109 [[image:1654827332142-133.png]]
110
111
112 = 2.  Configure LLDS12 to connect to LoRaWAN network =
113
114 == 2.1  How it works ==
115
116 (((
117 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
118 )))
119
120 (((
121 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
122 )))
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127 (((
128 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 )))
130
131 (((
132 [[image:1654827857527-556.png]]
133 )))
134
135 (((
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137 )))
138
139 (((
140 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
141 )))
142
143 (((
144 Each LSPH01 is shipped with a sticker with the default device EUI as below:
145 )))
146
147 [[image:image-20220607170145-1.jpeg]]
148
149
150
151 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
152
153
154 **Register the device**
155
156
157 [[image:1654592600093-601.png]]
158
159
160
161 **Add APP EUI and DEV EUI**
162
163 [[image:1654592619856-881.png]]
164
165
166
167 **Add APP EUI in the application**
168
169 [[image:1654592632656-512.png]]
170
171
172
173 **Add APP KEY**
174
175 [[image:1654592653453-934.png]]
176
177
178 (% style="color:blue" %)**Step 2**(%%): Power on LLDS12
179
180
181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182
183 [[image:image-20220607170442-2.png]]
184
185
186 (((
187 (% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 )))
189
190 [[image:1654833501679-968.png]]
191
192
193
194 == 2.3  ​Uplink Payload ==
195
196 (((
197 LLDS12 will uplink payload via LoRaWAN with below payload format: 
198 )))
199
200 (((
201 Uplink payload includes in total 11 bytes.
202 )))
203
204 (((
205
206 )))
207
208 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
209 |=(% style="width: 62.5px;" %)(((
210 **Size (bytes)**
211 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
212 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
213 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
214 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
215 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
216 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
217 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
218 )))
219
220 [[image:1654833689380-972.png]]
221
222
223
224 === 2.3.1  Battery Info ===
225
226
227 Check the battery voltage for LLDS12.
228
229 Ex1: 0x0B45 = 2885mV
230
231 Ex2: 0x0B49 = 2889mV
232
233
234
235 === 2.3.2  DS18B20 Temperature sensor ===
236
237 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
238
239
240 **Example**:
241
242 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
243
244 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
245
246
247
248 === 2.3.3  Distance ===
249
250 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
251
252
253 **Example**:
254
255 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
256
257
258
259 === 2.3.4  Distance signal strength ===
260
261 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
262
263
264 **Example**:
265
266 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
267
268 Customers can judge whether they need to adjust the environment based on the signal strength.
269
270
271
272 === 2.3.5  Interrupt Pin ===
273
274 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
275
276 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
277
278 **Example:**
279
280 0x00: Normal uplink packet.
281
282 0x01: Interrupt Uplink Packet.
283
284
285
286 === 2.3.6  LiDAR temp ===
287
288 Characterize the internal temperature value of the sensor.
289
290 **Example: **
291 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
292 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
293
294
295
296 === 2.3.7  Message Type ===
297
298 (((
299 For a normal uplink payload, the message type is always 0x01.
300 )))
301
302 (((
303 Valid Message Type:
304 )))
305
306
307 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
308 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
309 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
310 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
311
312
313
314
315 === 2.3.8  Decode payload in The Things Network ===
316
317 While using TTN network, you can add the payload format to decode the payload.
318
319
320 [[image:1654592762713-715.png]]
321
322 (((
323 The payload decoder function for TTN is here:
324 )))
325
326 (((
327 LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
328 )))
329
330
331
332 == 2.4  Uplink Interval ==
333
334 The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
335
336
337
338 == 2.5  ​Show Data in DataCake IoT Server ==
339
340 (((
341 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
342 )))
343
344 (((
345
346 )))
347
348 (((
349 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
350 )))
351
352 (((
353 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
354 )))
355
356
357 [[image:1654592790040-760.png]]
358
359
360 [[image:1654592800389-571.png]]
361
362
363 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
364
365 (% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
366
367 [[image:1654832691989-514.png]]
368
369
370 [[image:1654592833877-762.png]]
371
372
373 [[image:1654832740634-933.png]]
374
375
376
377 (((
378 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
379 )))
380
381 (((
382
383 )))
384
385 [[image:1654833065139-942.png]]
386
387
388
389 [[image:1654833092678-390.png]]
390
391
392
393 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
394
395 [[image:1654833163048-332.png]]
396
397
398
399 == 2.6  Frequency Plans ==
400
401 (((
402 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
403 )))
404
405
406 === 2.6.1  EU863-870 (EU868) ===
407
408 (((
409 (% style="color:blue" %)**Uplink:**
410 )))
411
412 (((
413 868.1 - SF7BW125 to SF12BW125
414 )))
415
416 (((
417 868.3 - SF7BW125 to SF12BW125 and SF7BW250
418 )))
419
420 (((
421 868.5 - SF7BW125 to SF12BW125
422 )))
423
424 (((
425 867.1 - SF7BW125 to SF12BW125
426 )))
427
428 (((
429 867.3 - SF7BW125 to SF12BW125
430 )))
431
432 (((
433 867.5 - SF7BW125 to SF12BW125
434 )))
435
436 (((
437 867.7 - SF7BW125 to SF12BW125
438 )))
439
440 (((
441 867.9 - SF7BW125 to SF12BW125
442 )))
443
444 (((
445 868.8 - FSK
446 )))
447
448 (((
449
450 )))
451
452 (((
453 (% style="color:blue" %)**Downlink:**
454 )))
455
456 (((
457 Uplink channels 1-9 (RX1)
458 )))
459
460 (((
461 869.525 - SF9BW125 (RX2 downlink only)
462 )))
463
464
465
466 === 2.6.2  US902-928(US915) ===
467
468 (((
469 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
470 )))
471
472 (((
473 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
474 )))
475
476 (((
477 After Join success, the end node will switch to the correct sub band by:
478 )))
479
480 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
481 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
482
483
484
485
486 === 2.6.3  CN470-510 (CN470) ===
487
488 (((
489 Used in China, Default use CHE=1
490 )))
491
492 (((
493 (% style="color:blue" %)**Uplink:**
494 )))
495
496 (((
497 486.3 - SF7BW125 to SF12BW125
498 )))
499
500 (((
501 486.5 - SF7BW125 to SF12BW125
502 )))
503
504 (((
505 486.7 - SF7BW125 to SF12BW125
506 )))
507
508 (((
509 486.9 - SF7BW125 to SF12BW125
510 )))
511
512 (((
513 487.1 - SF7BW125 to SF12BW125
514 )))
515
516 (((
517 487.3 - SF7BW125 to SF12BW125
518 )))
519
520 (((
521 487.5 - SF7BW125 to SF12BW125
522 )))
523
524 (((
525 487.7 - SF7BW125 to SF12BW125
526 )))
527
528 (((
529
530 )))
531
532 (((
533 (% style="color:blue" %)**Downlink:**
534 )))
535
536 (((
537 506.7 - SF7BW125 to SF12BW125
538 )))
539
540 (((
541 506.9 - SF7BW125 to SF12BW125
542 )))
543
544 (((
545 507.1 - SF7BW125 to SF12BW125
546 )))
547
548 (((
549 507.3 - SF7BW125 to SF12BW125
550 )))
551
552 (((
553 507.5 - SF7BW125 to SF12BW125
554 )))
555
556 (((
557 507.7 - SF7BW125 to SF12BW125
558 )))
559
560 (((
561 507.9 - SF7BW125 to SF12BW125
562 )))
563
564 (((
565 508.1 - SF7BW125 to SF12BW125
566 )))
567
568 (((
569 505.3 - SF12BW125 (RX2 downlink only)
570 )))
571
572
573
574
575 === 2.6.4  AU915-928(AU915) ===
576
577 (((
578 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
579 )))
580
581 (((
582 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
583 )))
584
585 (((
586
587 )))
588
589 (((
590 After Join success, the end node will switch to the correct sub band by:
591 )))
592
593 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
594 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
595
596
597
598
599 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
600
601 (((
602 (% style="color:blue" %)**Default Uplink channel:**
603 )))
604
605 (((
606 923.2 - SF7BW125 to SF10BW125
607 )))
608
609 (((
610 923.4 - SF7BW125 to SF10BW125
611 )))
612
613 (((
614
615 )))
616
617 (((
618 (% style="color:blue" %)**Additional Uplink Channel**:
619 )))
620
621 (((
622 (OTAA mode, channel added by JoinAccept message)
623 )))
624
625 (((
626
627 )))
628
629 (((
630 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
631 )))
632
633 (((
634 922.2 - SF7BW125 to SF10BW125
635 )))
636
637 (((
638 922.4 - SF7BW125 to SF10BW125
639 )))
640
641 (((
642 922.6 - SF7BW125 to SF10BW125
643 )))
644
645 (((
646 922.8 - SF7BW125 to SF10BW125
647 )))
648
649 (((
650 923.0 - SF7BW125 to SF10BW125
651 )))
652
653 (((
654 922.0 - SF7BW125 to SF10BW125
655 )))
656
657 (((
658
659 )))
660
661 (((
662 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
663 )))
664
665 (((
666 923.6 - SF7BW125 to SF10BW125
667 )))
668
669 (((
670 923.8 - SF7BW125 to SF10BW125
671 )))
672
673 (((
674 924.0 - SF7BW125 to SF10BW125
675 )))
676
677 (((
678 924.2 - SF7BW125 to SF10BW125
679 )))
680
681 (((
682 924.4 - SF7BW125 to SF10BW125
683 )))
684
685 (((
686 924.6 - SF7BW125 to SF10BW125
687 )))
688
689 (((
690
691 )))
692
693 (((
694 (% style="color:blue" %)**Downlink:**
695 )))
696
697 (((
698 Uplink channels 1-8 (RX1)
699 )))
700
701 (((
702 923.2 - SF10BW125 (RX2)
703 )))
704
705
706
707
708 === 2.6.6  KR920-923 (KR920) ===
709
710 (((
711 (% style="color:blue" %)**Default channel:**
712 )))
713
714 (((
715 922.1 - SF7BW125 to SF12BW125
716 )))
717
718 (((
719 922.3 - SF7BW125 to SF12BW125
720 )))
721
722 (((
723 922.5 - SF7BW125 to SF12BW125
724 )))
725
726 (((
727
728 )))
729
730 (((
731 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
732 )))
733
734 (((
735 922.1 - SF7BW125 to SF12BW125
736 )))
737
738 (((
739 922.3 - SF7BW125 to SF12BW125
740 )))
741
742 (((
743 922.5 - SF7BW125 to SF12BW125
744 )))
745
746 (((
747 922.7 - SF7BW125 to SF12BW125
748 )))
749
750 (((
751 922.9 - SF7BW125 to SF12BW125
752 )))
753
754 (((
755 923.1 - SF7BW125 to SF12BW125
756 )))
757
758 (((
759 923.3 - SF7BW125 to SF12BW125
760 )))
761
762 (((
763
764 )))
765
766 (((
767 (% style="color:blue" %)**Downlink:**
768 )))
769
770 (((
771 Uplink channels 1-7(RX1)
772 )))
773
774 (((
775 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
776 )))
777
778
779
780
781 === 2.6.7  IN865-867 (IN865) ===
782
783 (((
784 (% style="color:blue" %)**Uplink:**
785 )))
786
787 (((
788 865.0625 - SF7BW125 to SF12BW125
789 )))
790
791 (((
792 865.4025 - SF7BW125 to SF12BW125
793 )))
794
795 (((
796 865.9850 - SF7BW125 to SF12BW125
797 )))
798
799 (((
800
801 )))
802
803 (((
804 (% style="color:blue" %)**Downlink:**
805 )))
806
807 (((
808 Uplink channels 1-3 (RX1)
809 )))
810
811 (((
812 866.550 - SF10BW125 (RX2)
813 )))
814
815
816
817
818 == 2.7  LED Indicator ==
819
820 The LLDS12 has an internal LED which is to show the status of different state.
821
822 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
823 * Blink once when device transmit a packet.
824
825
826
827
828 == 2.8  ​Firmware Change Log ==
829
830
831 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
832
833
834 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
835
836
837
838 = 3.  LiDAR ToF Measurement =
839
840 == 3.1 Principle of Distance Measurement ==
841
842 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
843
844 [[image:1654831757579-263.png]]
845
846
847
848 == 3.2 Distance Measurement Characteristics ==
849
850 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
851
852 [[image:1654831774373-275.png]]
853
854
855 (((
856 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
857 )))
858
859 (((
860 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
861 )))
862
863 (((
864 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
865 )))
866
867
868 (((
869 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
870 )))
871
872
873 [[image:1654831797521-720.png]]
874
875
876 (((
877 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
878 )))
879
880 [[image:1654831810009-716.png]]
881
882
883 (((
884 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
885 )))
886
887
888
889 == 3.3 Notice of usage: ==
890
891 Possible invalid /wrong reading for LiDAR ToF tech:
892
893 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
894 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
895 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
896 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
897
898
899
900
901 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
902
903 (((
904 (((
905 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
906 )))
907 )))
908
909 * (((
910 (((
911 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
912 )))
913 )))
914 * (((
915 (((
916 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
917 )))
918 )))
919
920 (((
921 (((
922
923 )))
924
925 (((
926 There are two kinds of commands to configure LLDS12, they are:
927 )))
928 )))
929
930 * (((
931 (((
932 (% style="color:#4f81bd" %)** General Commands**.
933 )))
934 )))
935
936 (((
937 (((
938 These commands are to configure:
939 )))
940 )))
941
942 * (((
943 (((
944 General system settings like: uplink interval.
945 )))
946 )))
947 * (((
948 (((
949 LoRaWAN protocol & radio related command.
950 )))
951 )))
952
953 (((
954 (((
955 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
956 )))
957 )))
958
959 (((
960 (((
961
962 )))
963 )))
964
965 * (((
966 (((
967 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
968 )))
969 )))
970
971 (((
972 (((
973 These commands only valid for LLDS12, as below:
974 )))
975 )))
976
977
978
979 == 4.1  Set Transmit Interval Time ==
980
981 Feature: Change LoRaWAN End Node Transmit Interval.
982
983 (% style="color:#037691" %)**AT Command: AT+TDC**
984
985 [[image:image-20220607171554-8.png]]
986
987
988 (((
989 (% style="color:#037691" %)**Downlink Command: 0x01**
990 )))
991
992 (((
993 Format: Command Code (0x01) followed by 3 bytes time value.
994 )))
995
996 (((
997 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
998 )))
999
1000 * (((
1001 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1002 )))
1003 * (((
1004 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1005
1006
1007
1008 )))
1009
1010
1011
1012
1013 == 4.2  Set Interrupt Mode ==
1014
1015 Feature, Set Interrupt mode for GPIO_EXIT.
1016
1017 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1018
1019 [[image:image-20220610105806-2.png]]
1020
1021
1022 (((
1023 (% style="color:#037691" %)**Downlink Command: 0x06**
1024 )))
1025
1026 (((
1027 Format: Command Code (0x06) followed by 3 bytes.
1028 )))
1029
1030 (((
1031 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1032 )))
1033
1034 * (((
1035 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1036 )))
1037 * (((
1038 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1039 )))
1040
1041
1042
1043
1044 == 4.3  Get Firmware Version Info ==
1045
1046 Feature: use downlink to get firmware version.
1047
1048 (% style="color:#037691" %)**Downlink Command: 0x26**
1049
1050 [[image:image-20220607171917-10.png]]
1051
1052 * Reply to the confirmation package: 26 01
1053 * Reply to non-confirmed packet: 26 00
1054
1055 Device will send an uplink after got this downlink command. With below payload:
1056
1057 Configures info payload:
1058
1059 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1060 |=(((
1061 **Size(bytes)**
1062 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1063 |**Value**|Software Type|(((
1064 Frequency
1065
1066 Band
1067 )))|Sub-band|(((
1068 Firmware
1069
1070 Version
1071 )))|Sensor Type|Reserve|(((
1072 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1073 Always 0x02
1074 )))
1075
1076 **Software Type**: Always 0x03 for LLDS12
1077
1078
1079 **Frequency Band**:
1080
1081 *0x01: EU868
1082
1083 *0x02: US915
1084
1085 *0x03: IN865
1086
1087 *0x04: AU915
1088
1089 *0x05: KZ865
1090
1091 *0x06: RU864
1092
1093 *0x07: AS923
1094
1095 *0x08: AS923-1
1096
1097 *0x09: AS923-2
1098
1099 *0xa0: AS923-3
1100
1101
1102 **Sub-Band**: value 0x00 ~~ 0x08
1103
1104
1105 **Firmware Version**: 0x0100, Means: v1.0.0 version
1106
1107
1108 **Sensor Type**:
1109
1110 0x01: LSE01
1111
1112 0x02: LDDS75
1113
1114 0x03: LDDS20
1115
1116 0x04: LLMS01
1117
1118 0x05: LSPH01
1119
1120 0x06: LSNPK01
1121
1122 0x07: LLDS12
1123
1124
1125
1126 = 5.  Battery & How to replace =
1127
1128 == 5.1  Battery Type ==
1129
1130 (((
1131 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1132 )))
1133
1134 (((
1135 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1136 )))
1137
1138 [[image:1654593587246-335.png]]
1139
1140
1141 Minimum Working Voltage for the LLDS12:
1142
1143 LLDS12:  2.45v ~~ 3.6v
1144
1145
1146
1147 == 5.2  Replace Battery ==
1148
1149 (((
1150 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1151 )))
1152
1153 (((
1154 And make sure the positive and negative pins match.
1155 )))
1156
1157
1158
1159 == 5.3  Power Consumption Analyze ==
1160
1161 (((
1162 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1163 )))
1164
1165 (((
1166 Instruction to use as below:
1167 )))
1168
1169
1170 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1171
1172 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1173
1174
1175 **Step 2**: Open it and choose
1176
1177 * Product Model
1178 * Uplink Interval
1179 * Working Mode
1180
1181 And the Life expectation in difference case will be shown on the right.
1182
1183 [[image:1654593605679-189.png]]
1184
1185
1186 The battery related documents as below:
1187
1188 * (((
1189 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1190 )))
1191 * (((
1192 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1193 )))
1194 * (((
1195 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1196 )))
1197
1198 [[image:image-20220607172042-11.png]]
1199
1200
1201
1202 === 5.3.1  ​Battery Note ===
1203
1204 (((
1205 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1206 )))
1207
1208
1209
1210 === ​5.3.2  Replace the battery ===
1211
1212 (((
1213 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1214 )))
1215
1216 (((
1217 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1218 )))
1219
1220
1221
1222 = 6.  Use AT Command =
1223
1224 == 6.1  Access AT Commands ==
1225
1226 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1227
1228 [[image:1654593668970-604.png]]
1229
1230 **Connection:**
1231
1232 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1233
1234 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1235
1236 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1237
1238
1239 (((
1240 (((
1241 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1242 )))
1243
1244 (((
1245 LLDS12 will output system info once power on as below:
1246 )))
1247 )))
1248
1249
1250 [[image:1654593712276-618.png]]
1251
1252 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1253
1254
1255 = 7.  FAQ =
1256
1257 == 7.1  How to change the LoRa Frequency Bands/Region ==
1258
1259 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1260 When downloading the images, choose the required image file for download. ​
1261
1262
1263 = 8.  Trouble Shooting =
1264
1265 == 8.1  AT Commands input doesn’t work ==
1266
1267
1268 (((
1269 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1270 )))
1271
1272
1273 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1274
1275
1276 (((
1277 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1278 )))
1279
1280 (((
1281 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1282 )))
1283
1284 (((
1285
1286 )))
1287
1288 (((
1289 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1290 )))
1291
1292 (((
1293 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1294 )))
1295
1296
1297
1298 = 9.  Order Info =
1299
1300
1301 Part Number: (% style="color:blue" %)**LLDS12-XX**
1302
1303
1304 (% style="color:blue" %)**XX**(%%): The default frequency band
1305
1306 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1307 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1308 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1309 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1310 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1311 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1312 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1313 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1314
1315
1316
1317
1318 = 10. ​ Packing Info =
1319
1320
1321 **Package Includes**:
1322
1323 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1324
1325 **Dimension and weight**:
1326
1327 * Device Size: cm
1328 * Device Weight: g
1329 * Package Size / pcs : cm
1330 * Weight / pcs : g
1331
1332
1333
1334
1335 = 11.  ​Support =
1336
1337 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1338 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0