Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220610095606-1.png]]
3
4
5 **Contents:**
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16
17 (((
18
19
20 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21
22 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23
24 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25
26 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27
28 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
29
30 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
31 )))
32
33
34 [[image:1654826306458-414.png]]
35
36
37
38 == ​1.2  Features ==
39
40 * LoRaWAN 1.0.3 Class A
41 * Ultra-low power consumption
42 * Laser technology for distance detection
43 * Operating Range - 0.1m~~12m①
44 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 * Monitor Battery Level
46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 * AT Commands to change parameters
48 * Uplink on periodically
49 * Downlink to change configure
50 * 8500mAh Battery for long term use
51
52 == 1.3  Probe Specification ==
53
54 * Storage temperature :-20℃~~75℃
55 * Operating temperature - -20℃~~60℃
56 * Operating Range - 0.1m~~12m①
57 * Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 * Distance resolution - 5mm
59 * Ambient light immunity - 70klux
60 * Enclosure rating - IP65
61 * Light source - LED
62 * Central wavelength - 850nm
63 * FOV - 3.6°
64 * Material of enclosure - ABS+PC
65 * Wire length - 25cm
66
67 == 1.4  Probe Dimension ==
68
69
70 [[image:1654827224480-952.png]]
71
72
73
74 == 1.5 ​ Applications ==
75
76 * Horizontal distance measurement
77 * Parking management system
78 * Object proximity and presence detection
79 * Intelligent trash can management system
80 * Robot obstacle avoidance
81 * Automatic control
82 * Sewer
83
84 == 1.6 Pin mapping and power on ==
85
86
87 [[image:1654827332142-133.png]]
88
89
90
91 = 2. Configure LLDS12 to connect to LoRaWAN network =
92
93 == 2.1 How it works ==
94
95 (((
96 The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
97 )))
98
99 (((
100 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
101 )))
102
103
104 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
105
106 (((
107 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
108 )))
109
110 (((
111 [[image:1654827857527-556.png]]
112 )))
113
114 (((
115 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 )))
117
118 (((
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
120 )))
121
122 (((
123 Each LSPH01 is shipped with a sticker with the default device EUI as below:
124 )))
125
126 [[image:image-20220607170145-1.jpeg]]
127
128
129
130 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
131
132
133 **Register the device**
134
135
136 [[image:1654592600093-601.png]]
137
138
139 **Add APP EUI and DEV EUI**
140
141 [[image:1654592619856-881.png]]
142
143
144 **Add APP EUI in the application**
145
146 [[image:1654592632656-512.png]]
147
148
149
150 **Add APP KEY**
151
152 [[image:1654592653453-934.png]]
153
154
155 (% style="color:blue" %)**Step 2**(%%): Power on LSPH01
156
157
158 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
159
160 [[image:image-20220607170442-2.png]]
161
162
163 (((
164 (% style="color:blue" %)**Step 3**(%%)**:** The LSPH01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
165 )))
166
167 [[image:1654592697690-910.png]]
168
169
170
171 == 2.3 ​Uplink Payload ==
172
173 (((
174 LSPH01 will uplink payload via LoRaWAN with below payload format: 
175 )))
176
177 (((
178 Uplink payload includes in total 11 bytes.
179 )))
180
181 (((
182 Normal uplink payload:
183 )))
184
185 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
186 |=(% style="width: 62.5px;" %)(((
187 **Size (bytes)**
188 )))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
189 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
190 [[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
191
192 [[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
193 )))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
194 [[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
195 )))|Reserve|(((
196 [[Message Type>>||anchor="H2.3.6MessageType"]]
197 )))
198
199 [[image:1654592721645-318.png]]
200
201
202
203 === 2.3.1 Battery Info ===
204
205
206 Check the battery voltage for LSPH01.
207
208 Ex1: 0x0B45 = 2885mV
209
210 Ex2: 0x0B49 = 2889mV
211
212
213
214 === 2.3.2 DS18B20 Temperature sensor ===
215
216 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
217
218
219 **Example**:
220
221 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
222
223 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
224
225
226
227 === 2.3.3 Soil pH ===
228
229 Range: 0 ~~ 14 pH
230
231 **Example:**
232
233 (% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
234
235
236
237 === 2.3.4 Soil Temperature ===
238
239 Get Soil Temperature 
240
241
242 **Example**:
243
244 If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
245
246 If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
247
248
249
250 === 2.3.5 Interrupt Pin ===
251
252 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
253
254
255 **Example:**
256
257 0x00: Normal uplink packet.
258
259 0x01: Interrupt Uplink Packet.
260
261
262
263 === 2.3.6 Message Type ===
264
265 (((
266 For a normal uplink payload, the message type is always 0x01.
267 )))
268
269 (((
270 Valid Message Type:
271 )))
272
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
275 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
276 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
277 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
278 |(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
279
280 === 2.3.7 Decode payload in The Things Network ===
281
282 While using TTN network, you can add the payload format to decode the payload.
283
284
285 [[image:1654592762713-715.png]]
286
287 (((
288 The payload decoder function for TTN is here:
289 )))
290
291 (((
292 LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
293 )))
294
295
296
297 == 2.4 Uplink Interval ==
298
299 The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
300
301
302
303 == 2.5 ​Show Data in DataCake IoT Server ==
304
305 (((
306 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
307 )))
308
309 (((
310
311 )))
312
313 (((
314 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
315 )))
316
317 (((
318 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
319 )))
320
321
322 [[image:1654592790040-760.png]]
323
324
325 [[image:1654592800389-571.png]]
326
327
328 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
329
330 (% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
331
332 [[image:1654592819047-535.png]]
333
334
335
336 [[image:1654592833877-762.png]]
337
338
339 [[image:1654592856403-259.png]]
340
341
342 (((
343 (% style="color:blue" %)**Step 5**(%%)**: add payload decode**
344 )))
345
346 (((
347 Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
348 )))
349
350
351 [[image:1654592878525-845.png]]
352
353 [[image:1654592892967-474.png]]
354
355
356 [[image:1654592905354-123.png]]
357
358
359 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
360
361
362 [[image:1654592917530-261.png]]
363
364
365
366 == 2.6 Installation and Maintain ==
367
368 === 2.6.1 Before measurement ===
369
370 (((
371 (((
372 If the LSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 
373 )))
374 )))
375
376
377
378 === 2.6.2 Measurement ===
379
380
381 (((
382 (% style="color:#4f81bd" %)**Measurement the soil surface:**
383 )))
384
385 (((
386 [[image:1654592946732-634.png]]
387 )))
388
389 (((
390 Choose the proper measuring position. Split the surface soil according to the measured deep.
391 )))
392
393 (((
394 Put pure water, or rainwater to make the soil of measurement point to moist mud. Remove rocks or hard things.
395 )))
396
397 (((
398 Slowly insert the probe to the measure point. Don’t use large force which will break the probe. Make sure not shake when inserting.
399 )))
400
401 (((
402 Put soil over the probe after insert. And start to measure.
403 )))
404
405 (((
406
407 )))
408
409 (((
410 (% style="color:#4f81bd" %)**Measurement inside soil:**
411 )))
412
413 (((
414 Dig a hole with diameter > 20CM.
415 )))
416
417 (((
418 Insert the probe inside, method like measure the surface.
419 )))
420
421
422
423 === 2.6.3 Maintain Probe ===
424
425 1. (((
426 pH probe electrode is fragile and no strong. User must avoid strong force or hitting it.
427 )))
428 1. (((
429 After long time use (3~~ 6  months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it.
430 )))
431 1. (((
432 Probe reference electrode is also no strong, need to avoid strong force or hitting.
433 )))
434 1. (((
435 User should keep reference electrode wet while not use.
436 )))
437 1. (((
438 Avoid the probes to touch oily matter. Which will cause issue in accuracy.
439 )))
440 1. (((
441 The probe is IP68 can be put in water.
442
443
444
445 )))
446
447 == 2.7 Calibration ==
448
449 (((
450 User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable).
451 )))
452
453 (((
454 After stable, user can use below command to calibrate.
455 )))
456
457 [[image:image-20220607171149-4.png]]
458
459
460 (% style="color:#037691" %)**Calibration Payload**
461
462 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
463 |=(% style="width: 62.5px;" %)(((
464 **Size (bytes)**
465 )))|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**7**|=(% style="width: 89px;" %)**1**
466 |**Value**|(((
467 PH4
468
469 Calibrate value
470 )))|PH6.86 Calibrate value|(((
471 PH9.18
472
473 Calibrate value
474 )))|Reserve|(((
475 [[Message Type>>||anchor="H2.3.6MessageType"]]
476
477 Always 0x03
478 )))
479
480 User can also send 0x14 downlink command to poll the current calibration payload.
481
482 [[image:image-20220607171416-7.jpeg]]
483
484
485 * Reply to the confirmation package: 14 01
486 * Reply to non-confirmed packet: 14 00
487
488
489
490 == 2.6  Frequency Plans ==
491
492 (((
493 The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
494 )))
495
496
497 === 2.6.1  EU863-870 (EU868) ===
498
499 (((
500 (% style="color:blue" %)**Uplink:**
501 )))
502
503 (((
504 868.1 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 868.3 - SF7BW125 to SF12BW125 and SF7BW250
509 )))
510
511 (((
512 868.5 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 867.1 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 867.3 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 867.5 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 867.7 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 867.9 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 868.8 - FSK
537 )))
538
539 (((
540
541 )))
542
543 (((
544 (% style="color:blue" %)**Downlink:**
545 )))
546
547 (((
548 Uplink channels 1-9 (RX1)
549 )))
550
551 (((
552 869.525 - SF9BW125 (RX2 downlink only)
553 )))
554
555
556
557 === 2.6.2  US902-928(US915) ===
558
559 (((
560 Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
561 )))
562
563 (((
564 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
565 )))
566
567 (((
568 After Join success, the end node will switch to the correct sub band by:
569 )))
570
571 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
572 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
573
574
575
576
577
578 === 2.6.3 CN470-510 (CN470) ===
579
580 (((
581 Used in China, Default use CHE=1
582 )))
583
584 (((
585 (% style="color:blue" %)**Uplink:**
586 )))
587
588 (((
589 486.3 - SF7BW125 to SF12BW125
590 )))
591
592 (((
593 486.5 - SF7BW125 to SF12BW125
594 )))
595
596 (((
597 486.7 - SF7BW125 to SF12BW125
598 )))
599
600 (((
601 486.9 - SF7BW125 to SF12BW125
602 )))
603
604 (((
605 487.1 - SF7BW125 to SF12BW125
606 )))
607
608 (((
609 487.3 - SF7BW125 to SF12BW125
610 )))
611
612 (((
613 487.5 - SF7BW125 to SF12BW125
614 )))
615
616 (((
617 487.7 - SF7BW125 to SF12BW125
618 )))
619
620 (((
621
622 )))
623
624 (((
625 (% style="color:blue" %)**Downlink:**
626 )))
627
628 (((
629 506.7 - SF7BW125 to SF12BW125
630 )))
631
632 (((
633 506.9 - SF7BW125 to SF12BW125
634 )))
635
636 (((
637 507.1 - SF7BW125 to SF12BW125
638 )))
639
640 (((
641 507.3 - SF7BW125 to SF12BW125
642 )))
643
644 (((
645 507.5 - SF7BW125 to SF12BW125
646 )))
647
648 (((
649 507.7 - SF7BW125 to SF12BW125
650 )))
651
652 (((
653 507.9 - SF7BW125 to SF12BW125
654 )))
655
656 (((
657 508.1 - SF7BW125 to SF12BW125
658 )))
659
660 (((
661 505.3 - SF12BW125 (RX2 downlink only)
662 )))
663
664
665
666
667 === 2.6.4 AU915-928(AU915) ===
668
669 (((
670 Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
671 )))
672
673 (((
674 To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
675 )))
676
677 (((
678
679 )))
680
681 (((
682 After Join success, the end node will switch to the correct sub band by:
683 )))
684
685 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
686 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
687
688
689
690
691 === 2.6.5 AS920-923 & AS923-925 (AS923) ===
692
693 (((
694 (% style="color:blue" %)**Default Uplink channel:**
695 )))
696
697 (((
698 923.2 - SF7BW125 to SF10BW125
699 )))
700
701 (((
702 923.4 - SF7BW125 to SF10BW125
703 )))
704
705 (((
706
707 )))
708
709 (((
710 (% style="color:blue" %)**Additional Uplink Channel**:
711 )))
712
713 (((
714 (OTAA mode, channel added by JoinAccept message)
715 )))
716
717 (((
718
719 )))
720
721 (((
722 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
723 )))
724
725 (((
726 922.2 - SF7BW125 to SF10BW125
727 )))
728
729 (((
730 922.4 - SF7BW125 to SF10BW125
731 )))
732
733 (((
734 922.6 - SF7BW125 to SF10BW125
735 )))
736
737 (((
738 922.8 - SF7BW125 to SF10BW125
739 )))
740
741 (((
742 923.0 - SF7BW125 to SF10BW125
743 )))
744
745 (((
746 922.0 - SF7BW125 to SF10BW125
747 )))
748
749 (((
750
751 )))
752
753 (((
754 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
755 )))
756
757 (((
758 923.6 - SF7BW125 to SF10BW125
759 )))
760
761 (((
762 923.8 - SF7BW125 to SF10BW125
763 )))
764
765 (((
766 924.0 - SF7BW125 to SF10BW125
767 )))
768
769 (((
770 924.2 - SF7BW125 to SF10BW125
771 )))
772
773 (((
774 924.4 - SF7BW125 to SF10BW125
775 )))
776
777 (((
778 924.6 - SF7BW125 to SF10BW125
779 )))
780
781 (((
782
783 )))
784
785 (((
786 (% style="color:blue" %)**Downlink:**
787 )))
788
789 (((
790 Uplink channels 1-8 (RX1)
791 )))
792
793 (((
794 923.2 - SF10BW125 (RX2)
795 )))
796
797
798
799
800 === 2.6.6 KR920-923 (KR920) ===
801
802 (((
803 (% style="color:blue" %)**Default channel:**
804 )))
805
806 (((
807 922.1 - SF7BW125 to SF12BW125
808 )))
809
810 (((
811 922.3 - SF7BW125 to SF12BW125
812 )))
813
814 (((
815 922.5 - SF7BW125 to SF12BW125
816 )))
817
818 (((
819
820 )))
821
822 (((
823 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
824 )))
825
826 (((
827 922.1 - SF7BW125 to SF12BW125
828 )))
829
830 (((
831 922.3 - SF7BW125 to SF12BW125
832 )))
833
834 (((
835 922.5 - SF7BW125 to SF12BW125
836 )))
837
838 (((
839 922.7 - SF7BW125 to SF12BW125
840 )))
841
842 (((
843 922.9 - SF7BW125 to SF12BW125
844 )))
845
846 (((
847 923.1 - SF7BW125 to SF12BW125
848 )))
849
850 (((
851 923.3 - SF7BW125 to SF12BW125
852 )))
853
854 (((
855
856 )))
857
858 (((
859 (% style="color:blue" %)**Downlink:**
860 )))
861
862 (((
863 Uplink channels 1-7(RX1)
864 )))
865
866 (((
867 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
868 )))
869
870
871
872
873 === 2.6.7 IN865-867 (IN865) ===
874
875 (((
876 (% style="color:blue" %)**Uplink:**
877 )))
878
879 (((
880 865.0625 - SF7BW125 to SF12BW125
881 )))
882
883 (((
884 865.4025 - SF7BW125 to SF12BW125
885 )))
886
887 (((
888 865.9850 - SF7BW125 to SF12BW125
889 )))
890
891 (((
892
893 )))
894
895 (((
896 (% style="color:blue" %)**Downlink:**
897 )))
898
899 (((
900 Uplink channels 1-3 (RX1)
901 )))
902
903 (((
904 866.550 - SF10BW125 (RX2)
905 )))
906
907
908
909
910 == 2.7  LED Indicator ==
911
912 The LLDS12 has an internal LED which is to show the status of different state.
913
914 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
915 * Blink once when device transmit a packet.
916
917
918 == 2.8  ​Firmware Change Log ==
919
920
921 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
922
923
924 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
925
926
927
928 = 3.  LiDAR ToF Measurement =
929
930 == 3.1 Principle of Distance Measurement ==
931
932 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
933
934 [[image:1654831757579-263.png]]
935
936
937
938 == 3.2 Distance Measurement Characteristics ==
939
940 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
941
942 [[image:1654831774373-275.png]]
943
944
945 ①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
946
947 ②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
948
949 ③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
950
951
952 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
953
954
955 [[image:1654831797521-720.png]]
956
957
958 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
959
960 [[image:1654831810009-716.png]]
961
962
963 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
964
965
966
967 == 3.3 Notice of usage: ==
968
969 Possible invalid /wrong reading for LiDAR ToF tech:
970
971 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
972 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
973 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
974 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
975
976 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
977
978 (((
979 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
980 )))
981
982 * (((
983 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
984 )))
985 * (((
986 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
987 )))
988
989 (((
990
991
992 There are two kinds of commands to configure LLDS12, they are:
993 )))
994
995 * (((
996 (% style="color:#4f81bd" %)** General Commands**.
997 )))
998
999 (((
1000 These commands are to configure:
1001 )))
1002
1003 * (((
1004 General system settings like: uplink interval.
1005 )))
1006 * (((
1007 LoRaWAN protocol & radio related command.
1008 )))
1009
1010 (((
1011 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1012 )))
1013
1014 (((
1015
1016 )))
1017
1018 * (((
1019 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
1020 )))
1021
1022 (((
1023 These commands only valid for LLDS12, as below:
1024 )))
1025
1026
1027
1028 == 4.1  Set Transmit Interval Time ==
1029
1030 Feature: Change LoRaWAN End Node Transmit Interval.
1031
1032 (% style="color:#037691" %)**AT Command: AT+TDC**
1033
1034 [[image:image-20220607171554-8.png]]
1035
1036
1037
1038 (((
1039 (% style="color:#037691" %)**Downlink Command: 0x01**
1040 )))
1041
1042 (((
1043 Format: Command Code (0x01) followed by 3 bytes time value.
1044 )))
1045
1046 (((
1047 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1048 )))
1049
1050 * (((
1051 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1052 )))
1053 * (((
1054 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1055
1056
1057
1058 )))
1059
1060 == 4.2  Set Interrupt Mode ==
1061
1062 Feature, Set Interrupt mode for GPIO_EXIT.
1063
1064 (% style="color:#037691" %)**AT Command: AT+INTMOD**
1065
1066 [[image:image-20220610105806-2.png]]
1067
1068
1069
1070
1071 (((
1072 (% style="color:#037691" %)**Downlink Command: 0x06**
1073 )))
1074
1075 (((
1076 Format: Command Code (0x06) followed by 3 bytes.
1077 )))
1078
1079 (((
1080 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1081 )))
1082
1083 * (((
1084 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1085 )))
1086 * (((
1087 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1088 )))
1089
1090 == 4.3  Get Firmware Version Info ==
1091
1092 Feature: use downlink to get firmware version.
1093
1094 (% style="color:#037691" %)**Downlink Command: 0x26**
1095
1096 [[image:image-20220607171917-10.png]]
1097
1098 * Reply to the confirmation package: 26 01
1099 * Reply to non-confirmed packet: 26 00
1100
1101 Device will send an uplink after got this downlink command. With below payload:
1102
1103 Configures info payload:
1104
1105 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1106 |=(((
1107 **Size(bytes)**
1108 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1109 |**Value**|Software Type|(((
1110 Frequency
1111
1112 Band
1113 )))|Sub-band|(((
1114 Firmware
1115
1116 Version
1117 )))|Sensor Type|Reserve|(((
1118 [[Message Type>>||anchor="H2.3.6MessageType"]]
1119 Always 0x02
1120 )))
1121
1122 **Software Type**: Always 0x03 for LLDS12
1123
1124
1125 **Frequency Band**:
1126
1127 *0x01: EU868
1128
1129 *0x02: US915
1130
1131 *0x03: IN865
1132
1133 *0x04: AU915
1134
1135 *0x05: KZ865
1136
1137 *0x06: RU864
1138
1139 *0x07: AS923
1140
1141 *0x08: AS923-1
1142
1143 *0x09: AS923-2
1144
1145 *0xa0: AS923-3
1146
1147
1148 **Sub-Band**: value 0x00 ~~ 0x08
1149
1150
1151 **Firmware Version**: 0x0100, Means: v1.0.0 version
1152
1153
1154 **Sensor Type**:
1155
1156 0x01: LSE01
1157
1158 0x02: LDDS75
1159
1160 0x03: LDDS20
1161
1162 0x04: LLMS01
1163
1164 0x05: LSPH01
1165
1166 0x06: LSNPK01
1167
1168 0x07: LLDS12
1169
1170
1171
1172 = 5.  Battery & How to replace =
1173
1174 == 5.1  Battery Type ==
1175
1176 (((
1177 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1178 )))
1179
1180 (((
1181 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1182 )))
1183
1184 [[image:1654593587246-335.png]]
1185
1186
1187 Minimum Working Voltage for the LLDS12:
1188
1189 LLDS12:  2.45v ~~ 3.6v
1190
1191
1192
1193 == 5.2  Replace Battery ==
1194
1195 (((
1196 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1197 )))
1198
1199 (((
1200 And make sure the positive and negative pins match.
1201 )))
1202
1203
1204
1205 == 5.3  Power Consumption Analyze ==
1206
1207 (((
1208 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1209 )))
1210
1211 (((
1212 Instruction to use as below:
1213 )))
1214
1215
1216 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1217
1218 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1219
1220
1221 **Step 2**: Open it and choose
1222
1223 * Product Model
1224 * Uplink Interval
1225 * Working Mode
1226
1227 And the Life expectation in difference case will be shown on the right.
1228
1229 [[image:1654593605679-189.png]]
1230
1231
1232 The battery related documents as below:
1233
1234 * (((
1235 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1236 )))
1237 * (((
1238 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1239 )))
1240 * (((
1241 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1242 )))
1243
1244 [[image:image-20220607172042-11.png]]
1245
1246
1247
1248 === 5.3.1  ​Battery Note ===
1249
1250 (((
1251 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1252 )))
1253
1254
1255
1256 === ​5.3.2  Replace the battery ===
1257
1258 (((
1259 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1260 )))
1261
1262 (((
1263 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1264 )))
1265
1266
1267
1268 = 6.  Use AT Command =
1269
1270 == 6.1  Access AT Commands ==
1271
1272 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1273
1274 [[image:1654593668970-604.png]]
1275
1276 **Connection:**
1277
1278 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1279
1280 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1281
1282 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1283
1284
1285 (((
1286 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1287 )))
1288
1289
1290 [[image:1654593712276-618.png]]
1291
1292 Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1293
1294
1295 = 7.  FAQ =
1296
1297 == 7.1  How to change the LoRa Frequency Bands/Region ==
1298
1299 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1300 When downloading the images, choose the required image file for download. ​
1301
1302
1303 = 8.  Trouble Shooting =
1304
1305 == 8.1  AT Commands input doesn’t work ==
1306
1307
1308 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1309
1310
1311 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1312
1313
1314 (((
1315 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1316 )))
1317
1318 (((
1319 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1320 )))
1321
1322 (((
1323
1324 )))
1325
1326 (((
1327 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1328 )))
1329
1330 (((
1331 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1332 )))
1333
1334
1335
1336 = 9.  Order Info =
1337
1338
1339 Part Number: (% style="color:blue" %)**LLDS12-XX**
1340
1341
1342 (% style="color:blue" %)**XX**(%%): The default frequency band
1343
1344 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1345 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1346 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1347 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1348 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1349 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1350 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1351 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1352
1353 = 10. ​ Packing Info =
1354
1355
1356 **Package Includes**:
1357
1358 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1359
1360 **Dimension and weight**:
1361
1362 * Device Size: cm
1363 * Device Weight: g
1364 * Package Size / pcs : cm
1365 * Weight / pcs : g
1366
1367 = 11.  ​Support =
1368
1369 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1370 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1371
1372
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0