Show last authors
1
2
3
4 **Table of Contents:**
5
6 {{toc/}}
7
8
9
10
11
12
13 = 1. Introduction =
14
15 == 1.1 What is D2x-LB LoRaWAN Temperature Sensor ==
16
17 The Dragino D2x-LB is a (% style="color:blue" %)**LoRaWAN Temperature Sensor**(%%) for Internet of Things solution. D2x-LB has 5v and 12v output , 4~~20mA, 0~~30v input interface to power and get value from Analog Sensor. D2x-LB will convert the Analog Value to LoRaWAN wireless data and send to IoT platform via LoRaWAN gateway.
18
19 The LoRa wireless technology used in D2x-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
20
21 The temperature sensor used in D2x-LB can (% style="color:blue" %)**measure -55°C ~~ 125°C with accuracy ±0.5°C (max ±2.0 °C)**(%%).
22
23 D2x-LB supports (% style="color:blue" %)**temperature alarm feature,**(%%) user can set temperature alarm for instant notice.
24
25 D2x-LB has max 3 probes which measure maximum 3 temperature points.
26
27 D2x-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
28
29 D2x-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
30
31 Each D2x-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
32
33 == 1.2 ​Features ==
34
35
36 * LoRaWAN 1.0.3 Class A
37 * Ultra-low power consumption
38 * 1 ~~ 3 External Temperature Probesr
39 * Measure range -55°C ~~ 125°C
40 * Temperature alarm
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Battery for long term use
47
48 == 1.3 Specification ==
49
50
51 (% style="color:#037691" %)**Micro Controller:**
52
53 * MCU: 48Mhz ARM
54 * Flash: 256KB
55 * RAM: 64KB
56
57 (% style="color:#037691" %)**Common DC Characteristics:**
58
59 * Supply Voltage: 2.5v ~~ 3.6v
60 * Operating Temperature: -40 ~~ 85°C
61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Current Input (DC) Measuring :**
70
71 * Range: 0 ~~ 20mA
72 * Accuracy: 0.02mA
73 * Resolution: 0.001mA
74
75 (% style="color:#037691" %)**Voltage Input Measuring:**
76
77 * Range: 0 ~~ 30v
78 * Accuracy: 0.02v
79 * Resolution: 0.001v
80
81 (% style="color:#037691" %)**Battery:**
82
83 * Li/SOCI2 un-chargeable battery
84 * Capacity: 8500mAh
85 * Self-Discharge: <1% / Year @ 25°C
86 * Max continuously current: 130mA
87 * Max boost current: 2A, 1 second
88
89 (% style="color:#037691" %)**Power Consumption**
90
91 * Sleep Mode: 5uA @ 3.3v
92 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
93
94 == 1.4 Supported Extenal Sensors ==
95
96 (% class="wikigeneratedid" id="H1.6.1ThreadInstallationType" %)
97 D2x-LB can be used to power and connect to traditional industrial sensors and convert the sensor output signal to LoRaWAN signal. Below are some examples field as reference:
98
99 * **Pressure Sensor: **level sensors, level probes and pressure transmitters.
100 * **Flow**: flow of gases, liquids, or sludges.
101 * **Level**:
102 * **Temperature/ Humidity**:temperature probes, such as RTD temperature probes, thermocouples.
103 * **Liquid analysis**: pH values, redox potential, electrolytic conductivity, ammonia, dissolved oxygen, turbidity, chlorine, and much more
104
105 **Key point for external sensor:**
106
107 * Can be powered by 5v or 12v. Require Current < 1A.
108 * Sensor has output within range: 4~~20mA or 0~~30v.
109 * Sensor will be power off and power on after deployment. and After power on, it can provide valid output within several seconds.
110
111 == 1.5 Sleep mode and working mode ==
112
113
114 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
115
116 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
117
118
119 == 1.6 Button & LEDs ==
120
121
122 [[image:1675071855856-879.png]]
123
124
125 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
126 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
127 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
128 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
129 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
130 )))
131 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
132 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
133 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
134 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
135 )))
136 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means D2x-LB is in Deep Sleep Mode.
137
138 == 1.7 Pin Mapping ==
139
140 [[image:1675072568006-274.png]]
141
142 * **+3v3_OUT**: Controllable 3.3v output, Actually voltage level same as Battery, 2.6v ~~ 3.6v
143 * **+5v_OUT**:Controllable 5.0v output
144 * **GND**: GND
145 * **INT**: Interrupt Pin
146 * **IN1 & IN2**:Digital IN1 and Digital IN2
147 * **IDC_IN**: 4~~20mA current input pin
148 * **VDC_IN**: 0~~30v sensor voltage input pin
149 * **SDI-12_DATA**: No used
150 * **+12v_OUT**:Controllable 12v output
151 * **GND**:GND
152
153 == 1.8 BLE connection ==
154
155
156 D2x-LB support BLE remote configure.
157
158
159 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
160
161 * Press button to send an uplink
162 * Press button to active device.
163 * Device Power on or reset.
164
165 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
166
167
168 == 1.9 Mechanical ==
169
170
171 [[image:1675143884058-338.png]]
172
173
174 [[image:1675143899218-599.png]]
175
176
177 [[image:1675143909447-639.png]]
178
179
180 = 2. Configure D2x-LB to connect to LoRaWAN network =
181
182 == 2.1 How it works ==
183
184
185 The D2x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the D2x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
186
187
188 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189
190
191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192
193
194 [[image:1675144005218-297.png]]
195
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199
200 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from D2x-LB.
201
202 Each D2x-LB is shipped with a sticker with the default device EUI as below:
203
204 [[image:image-20230131134744-2.jpeg]]
205
206
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
209
210
211 (% style="color:blue" %)**Register the device**
212
213 [[image:1675144099263-405.png]]
214
215
216 (% style="color:blue" %)**Add APP EUI and DEV EUI**
217
218 [[image:1675144117571-832.png]]
219
220
221 (% style="color:blue" %)**Add APP EUI in the application**
222
223
224 [[image:1675144143021-195.png]]
225
226
227 (% style="color:blue" %)**Add APP KEY**
228
229 [[image:1675144157838-392.png]]
230
231 (% style="color:blue" %)**Step 2:**(%%) Activate on D2x-LB
232
233
234 Press the button for 5 seconds to activate the D2x-LB.
235
236 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
237
238 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
239
240
241 == 2.3 ​Uplink Payload ==
242
243 === 2.3.1 Device Status, FPORT~=5 ===
244
245
246 Include device configure status. Once D2x-LB Joined the network, it will uplink this message to the server.
247
248 Users can also use the downlink command(0x26 01) to ask D2x-LB to resend this uplink.
249
250
251 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
252 |(% colspan="6" %)**Device Status (FPORT=5)**
253 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
254 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
255
256 Example parse in TTNv3
257
258 [[image:1675144504430-490.png]]
259
260
261 (% style="color:#037691" %)**Sensor Model**(%%): For D2x-LB, this value is 0x16
262
263 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
264
265 (% style="color:#037691" %)**Frequency Band**:
266
267 *0x01: EU868
268
269 *0x02: US915
270
271 *0x03: IN865
272
273 *0x04: AU915
274
275 *0x05: KZ865
276
277 *0x06: RU864
278
279 *0x07: AS923
280
281 *0x08: AS923-1
282
283 *0x09: AS923-2
284
285 *0x0a: AS923-3
286
287 *0x0b: CN470
288
289 *0x0c: EU433
290
291 *0x0d: KR920
292
293 *0x0e: MA869
294
295
296 (% style="color:#037691" %)**Sub-Band**:
297
298 AU915 and US915:value 0x00 ~~ 0x08
299
300 CN470: value 0x0B ~~ 0x0C
301
302 Other Bands: Always 0x00
303
304
305 (% style="color:#037691" %)**Battery Info**:
306
307 Check the battery voltage.
308
309 Ex1: 0x0B45 = 2885mV
310
311 Ex2: 0x0B49 = 2889mV
312
313
314 === 2.3.2 Sensor value, FPORT~=2 ===
315
316
317 Uplink payload includes in total 9 bytes.
318
319
320 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
321 |(% style="width:97px" %)(((
322 **Size(bytes)**
323 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
324 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
325
326 [[image:1675144608950-310.png]]
327
328
329 === 2.3.3 Battery Info ===
330
331
332 Check the battery voltage for D2x-LB.
333
334 Ex1: 0x0B45 = 2885mV
335
336 Ex2: 0x0B49 = 2889mV
337
338
339 === 2.3.4 Probe Model ===
340
341
342 D2x-LB might connect to different kind of probes, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
343
344
345 For example.
346
347 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:839px" %)
348 |(% style="width:277px" %)**Probe Type**|(% style="width:188px" %)**4~~20mA scale for this probe**|(% style="width:317px" %)**Example: 12mA actually meaning for this probe**
349 |(% style="width:277px" %)PH Combination Electrodes|(% style="width:188px" %)0 ~~ 14 pH|(% style="width:317px" %)PH Value: 7
350 |(% style="width:277px" %)Water Pressure Sensor|(% style="width:188px" %)0~~5 meters|(% style="width:317px" %)2.5 meters pure water
351 |(% style="width:277px" %)Pressure transmitter probe|(% style="width:188px" %)0~~1MPa|(% style="width:317px" %)0.5MPa air / gas or water pressure
352
353 User can set different probe model for above probes. So IoT server is able to se identical how it should parse the 4~~20mA or 0~~30v sensor value and get the correct value.
354
355
356 === 2.3.5 0~~20mA value (IDC_IN) ===
357
358 (% style="color:#037691" %)**Payload Example**:
359
360 27AE(H) = 10158 (D)/1000 = 10.158mA.
361
362
363 Connect to a 2 wire 4~~20mA sensor.
364
365 [[image:image-20230225154759-1.png||height="408" width="741"]]
366
367
368 === 2.3.6 0~~30V value ( pin VDC_IN) ===
369
370
371 Measure the voltage value. The range is 0 to 30V.
372
373 (% style="color:#037691" %)**Example**:
374
375 138E(H) = 5006(D)/1000= 5.006V
376
377
378 === 2.3.7 IN1&IN2&INT pin ===
379
380
381 IN1 and IN2 are used as digital input pins.
382
383 (% style="color:#037691" %)**Example**:
384
385 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
386
387 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
388
389
390 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
391
392 (% style="color:#037691" %)**Example:**
393
394 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
395
396 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
397
398 0x01: Interrupt Uplink Packet.
399
400
401 === (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
402
403
404 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
405 |(% style="width:94px" %)(((
406 **Size(bytes)**
407 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
408 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
409 Voltage value, each 2 bytes is a set of voltage values.
410 )))
411
412 [[image:image-20230220171300-1.png||height="207" width="863"]]
413
414 Multiple sets of data collected are displayed in this form:
415
416 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
417
418
419 === 2.3.9 ​Decode payload in The Things Network ===
420
421
422 While using TTN network, you can add the payload format to decode the payload.
423
424
425 [[image:1675144839454-913.png]]
426
427
428 D2x-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
429
430
431 == 2.4 Uplink Interval ==
432
433
434 The D2x-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
435
436
437 == 2.5 Show Data in DataCake IoT Server ==
438
439
440 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
441
442
443 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
444
445 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
446
447
448 [[image:1675144951092-237.png]]
449
450
451 [[image:1675144960452-126.png]]
452
453
454 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
455
456 (% style="color:blue" %)**Step 4:** (%%)Create D2x-LB product.
457
458 [[image:1675145004465-869.png]]
459
460
461 [[image:1675145018212-853.png]]
462
463
464
465
466 [[image:1675145029119-717.png]]
467
468
469 (% style="color:blue" %)**Step 5: **(%%)add payload decode
470
471 [[image:1675145051360-659.png]]
472
473
474 [[image:1675145060812-420.png]]
475
476
477 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
478
479
480 [[image:1675145081239-376.png]]
481
482
483 == 2.6 Frequency Plans ==
484
485
486 The D2x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
487
488 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
489
490
491 == 2.7 ​Firmware Change Log ==
492
493
494 **Firmware download link:**
495
496 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
497
498
499 = 3. Configure PD2x-LB via AT Command or LoRaWAN Downlink =
500
501
502 Use can configure D2x-LB via AT Command or LoRaWAN Downlink.
503
504 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
505 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
506
507 There are two kinds of commands to configure D2x-LB, they are:
508
509 * (% style="color:#037691" %)**General Commands**
510
511 These commands are to configure:
512
513 * General system settings like: uplink interval.
514 * LoRaWAN protocol & radio related command.
515
516 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
517
518 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
519
520
521 * (% style="color:#037691" %)**Commands special design for D2x-LB**
522
523 These commands only valid for D2x-LB, as below:
524
525
526 == 3.1 Set Transmit Interval Time ==
527
528
529 Feature: Change LoRaWAN End Node Transmit Interval.
530
531 (% style="color:blue" %)**AT Command: AT+TDC**
532
533 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
534 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
535 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
536 30000
537 OK
538 the interval is 30000ms = 30s
539 )))
540 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
541 OK
542 Set transmit interval to 60000ms = 60 seconds
543 )))
544
545 (% style="color:blue" %)**Downlink Command: 0x01**
546
547 Format: Command Code (0x01) followed by 3 bytes time value.
548
549 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
550
551 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
552 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
553
554 == 3.2 Set Interrupt Mode ==
555
556
557 Feature, Set Interrupt mode for GPIO_EXIT.
558
559 (% style="color:blue" %)**AT Command: AT+INTMOD**
560
561 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
562 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
563 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
564 0
565 OK
566 the mode is 0 =Disable Interrupt
567 )))
568 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
569 Set Transmit Interval
570 0. (Disable Interrupt),
571 ~1. (Trigger by rising and falling edge)
572 2. (Trigger by falling edge)
573 3. (Trigger by rising edge)
574 )))|(% style="width:157px" %)OK
575
576 (% style="color:blue" %)**Downlink Command: 0x06**
577
578 Format: Command Code (0x06) followed by 3 bytes.
579
580 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
581
582 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
583 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
584
585 == 3.3 Set Power Output Duration ==
586
587 Control the output duration 3V3 , 5V or 12V. Before each sampling, device will
588
589 ~1. first enable the power output to external sensor,
590
591 2. keep it on as per duration, read sensor value and construct uplink payload
592
593 3. final, close the power output.
594
595
596 (% style="color:blue" %)**AT Command: AT+3V3T**
597
598 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
599 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
600 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
601 0
602 OK
603 )))
604 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
605 OK
606 default setting
607 )))
608 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
609 OK
610 )))
611 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
612 OK
613 )))
614
615 (% style="color:blue" %)**AT Command: AT+5VT**
616
617 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
618 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
619 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
620 0
621 OK
622 )))
623 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
624 OK
625 default setting
626 )))
627 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
628 OK
629 )))
630 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
631 OK
632 )))
633
634 (% style="color:blue" %)**AT Command: AT+12VT**
635
636 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
637 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
638 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
639 0
640 OK
641 )))
642 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
643 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
644 OK
645 )))
646
647 (% style="color:blue" %)**Downlink Command: 0x07**
648
649 Format: Command Code (0x07) followed by 3 bytes.
650
651 The first byte is which power, the second and third bytes are the time to turn on.
652
653 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
654 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
655 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
656 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
657 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
658 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
659
660 == 3.4 Set the Probe Model ==
661
662
663 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
664
665 **AT Command: AT** **+PROBE**
666
667 AT+PROBE=aabb
668
669 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
670
671 When aa=01, it is the pressure mode, which converts the current into a pressure value;
672
673 bb represents which type of pressure sensor it is.
674
675 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
676
677 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
678 |**Command Example**|**Function**|**Response**
679 |AT +PROBE =?|Get or Set the probe model.|0
680 OK
681 |AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
682 |(((
683 AT +PROBE =000A
684
685
686 )))|Set water depth sensor mode, 10m type.|OK
687 |AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
688 |AT +PROBE =0000|Initial state, no settings.|OK
689
690 **Downlink Command: 0x08**
691
692 Format: Command Code (0x08) followed by 2 bytes.
693
694 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
695 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
696
697 == 3.5 Multiple VDC collections in one uplink ==
698
699
700 Added AT+STDC command to collect the voltage of **VDC_INPUT** multiple times and upload it at one time.
701
702 (% style="color:blue" %)**AT Command: AT** **+STDC**
703
704 AT+STDC=aa,bb,bb
705
706 (% style="color:#037691" %)**aa:**(%%)
707 **0:** means disable this function and use TDC to send packets.
708 **1:** means enable this function, use the method of multiple acquisitions to send packets.
709 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
710 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
711
712 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
713 |**Command Example**|**Function**|**Response**
714 |AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
715 OK
716 |AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
717 Attention:Take effect after ATZ
718
719 OK
720 )))
721 |AT+STDC=0, 0,0|(((
722 Use the TDC interval to send packets.(default)
723
724
725 )))|(((
726 Attention:Take effect after ATZ
727
728 OK
729 )))
730
731 (% style="color:blue" %)**Downlink Command: 0xAE**
732
733 Format: Command Code (0x08) followed by 5 bytes.
734
735 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
736
737 = 4. Battery & how to replace =
738
739 == 4.1 Battery Type ==
740
741
742 D2x-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
743
744 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
745
746 [[image:1675146710956-626.png]]
747
748
749 Minimum Working Voltage for the D2x-LB:
750
751 D2x-LB:  2.45v ~~ 3.6v
752
753
754 == 4.2 Replace Battery ==
755
756
757 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
758
759 And make sure the positive and negative pins match.
760
761
762 == 4.3 Power Consumption Analyze ==
763
764
765 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
766
767 Instruction to use as below:
768
769 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
770
771 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
772
773 * Product Model
774 * Uplink Interval
775 * Working Mode
776
777 And the Life expectation in difference case will be shown on the right.
778
779 [[image:1675146895108-304.png]]
780
781
782 The battery related documents as below:
783
784 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
785 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
786 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
787
788 [[image:image-20230131145708-3.png]]
789
790
791 === 4.3.1 ​Battery Note ===
792
793
794 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
795
796
797 === 4.3.2 Replace the battery ===
798
799
800 You can change the battery in the D2x-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
801
802 The default battery pack of D2x-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
803
804
805 = 5. Remote Configure device =
806
807 == 5.1 Connect via BLE ==
808
809
810 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
811
812
813 == 5.2 AT Command Set ==
814
815
816
817 = 6. OTA firmware update =
818
819
820 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
821
822
823 = 7. FAQ =
824
825 == 7.1 How to use AT Command via UART to access device? ==
826
827
828 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
829
830
831 == 7.2 How to update firmware via UART port? ==
832
833
834 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
835
836
837 == 7.3 How to change the LoRa Frequency Bands/Region? ==
838
839
840 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
841 When downloading the images, choose the required image file for download. ​
842
843
844 = 8. Order Info =
845
846
847 Part Number: (% style="color:blue" %)**D2x-LB-XX-YY**
848
849 (% style="color:red" %)**XX**(%%): The default frequency band
850
851 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
852
853 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
854
855 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
856
857 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
858
859 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
860
861 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
862
863 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
864
865 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
866
867 (% style="color:#037691" %)**YY:**(%%) The grand connector hole size
868
869 * (% style="color:#037691" %)**M12**(%%): M12 hole
870
871 * (% style="color:#037691" %)**M16**(%%): M16 hole
872
873 * (% style="color:#037691" %)**M20**(%%): M20 hole
874
875 = 9. ​Packing Info =
876
877
878 (% style="color:#037691" %)**Package Includes**:
879
880 * D2x-LB LoRaWAN Temperature Sensor
881
882 (% style="color:#037691" %)**Dimension and weight**:
883
884 * Device Size: cm
885
886 * Device Weight: g
887
888 * Package Size / pcs : cm
889
890 * Weight / pcs : g
891
892 = 10. Support =
893
894
895 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
896
897 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0