Show last authors
1 [[image:image-20230131115217-1.png]]
2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LoRaWAN Pressure Sensor ==
17
18
19 (((
20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 )))
22
23 (((
24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 )))
26
27 (((
28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 )))
34
35 (((
36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 )))
38
39 (((
40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 )))
42
43 [[image:1675071321348-194.png]]
44
45
46 == 1.2 ​Features ==
47
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra-low power consumption
51 * Measure air / gas or water pressure
52 * Different pressure range available
53 * Thread Installation Type or Immersion Type
54 * Monitor Battery Level
55 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
56 * Support Bluetooth v5.1 and LoRaWAN remote configure
57 * Support wireless OTA update firmware
58 * Uplink on periodically
59 * Downlink to change configure
60 * 8500mAh Battery for long term use
61 * Controllable 3.3v,5v and 12v output to power external sensor
62
63 == 1.3 Specification ==
64
65
66 (% style="color:#037691" %)**Micro Controller:**
67
68 * MCU: 48Mhz ARM
69 * Flash: 256KB
70 * RAM: 64KB
71
72 (% style="color:#037691" %)**Common DC Characteristics:**
73
74 * Supply Voltage: 2.5v ~~ 3.6v
75 * Operating Temperature: -40 ~~ 85°C
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 * Max +22 dBm constant RF output vs.
81 * RX sensitivity: down to -139 dBm.
82 * Excellent blocking immunity
83
84 (% style="color:#037691" %)**Current Input Measuring :**
85
86 * Range: 0 ~~ 20mA
87 * Accuracy: 0.02mA
88 * Resolution: 0.001mA
89
90 (% style="color:#037691" %)**Voltage Input Measuring:**
91
92 * Range: 0 ~~ 30v
93 * Accuracy: 0.02v
94 * Resolution: 0.001v
95
96 (% style="color:#037691" %)**Battery:**
97
98 * Li/SOCI2 un-chargeable battery
99 * Capacity: 8500mAh
100 * Self-Discharge: <1% / Year @ 25°C
101 * Max continuously current: 130mA
102 * Max boost current: 2A, 1 second
103
104 (% style="color:#037691" %)**Power Consumption**
105
106 * Sleep Mode: 5uA @ 3.3v
107 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108
109 == 1.4 Probe Types ==
110
111 === 1.4.1 Thread Installation Type ===
112
113
114 [[image:1675071448299-229.png]]
115
116 * Hersman Pressure Transmitter
117 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
118 * Accuracy: 0.2% F.S
119 * Long-Term Stability: 0.2% F.S ±0.05%
120 * Overload 200% F.S
121 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
122 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
123 * Storage temperature: -30℃~~80℃
124 * Operating temperature: -20℃~~60℃
125 * Connector Type: Various Types, see order info
126
127 === 1.4.2 Immersion Type ===
128
129
130 [[image:1675071521308-426.png]]
131
132 * Immersion Type, Probe IP Level: IP68
133 * Measuring Range: Measure range can be customized, up to 100m.
134 * Accuracy: 0.2% F.S
135 * Long-Term Stability: ±0.2% F.S / Year
136 * Overload 200% F.S
137 * Zero Temperature Drift: ±2% F.S)
138 * FS Temperature Drift: ±2% F.S
139 * Storage temperature: -30℃~~80℃
140 * Operating temperature: -40℃~~85℃
141 * Material: 316 stainless steels
142
143 == 1.5 Probe Dimension ==
144
145
146
147 == 1.6 Application and Installation ==
148
149 === 1.6.1 Thread Installation Type ===
150
151
152 (% style="color:blue" %)**Application:**
153
154 * Hydraulic Pressure
155 * Petrochemical Industry
156 * Health and Medical
157 * Food & Beverage Processing
158 * Auto-controlling house
159 * Constant Pressure Water Supply
160 * Liquid Pressure measuring
161
162 Order the suitable thread size and install to measure the air / liquid pressure
163
164 [[image:1675071670469-145.png]]
165
166
167 === 1.6.2 Immersion Type ===
168
169
170 (% style="color:blue" %)**Application:**
171
172 Liquid & Water Pressure / Level detect.
173
174 [[image:1675071725288-579.png]]
175
176
177 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
178
179
180 [[image:1675071736646-450.png]]
181
182
183 [[image:1675071776102-240.png]]
184
185
186 == 1.7 Sleep mode and working mode ==
187
188
189 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
190
191 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
192
193
194 == 1.8 Button & LEDs ==
195
196
197 [[image:1675071855856-879.png]]
198
199
200 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
201 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
202 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
203 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
204 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
205 )))
206 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
208 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
210 )))
211 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
212
213 == 1.9 Pin Mapping ==
214
215
216 [[image:1675072568006-274.png]]
217
218
219 == 1.10 BLE connection ==
220
221
222 PS-LB support BLE remote configure.
223
224
225 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
226
227 * Press button to send an uplink
228 * Press button to active device.
229 * Device Power on or reset.
230
231 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
232
233
234 == 1.11 Mechanical ==
235
236
237 [[image:1675143884058-338.png]]
238
239
240 [[image:1675143899218-599.png]]
241
242
243 [[image:1675143909447-639.png]]
244
245
246 = 2. Configure PS-LB to connect to LoRaWAN network =
247
248 == 2.1 How it works ==
249
250
251 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
252
253
254 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
255
256
257 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
258
259
260 [[image:1675144005218-297.png]]
261
262
263 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
264
265
266 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267
268 Each PS-LB is shipped with a sticker with the default device EUI as below:
269
270 [[image:image-20230131134744-2.jpeg]]
271
272
273
274 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
275
276
277 (% style="color:blue" %)**Register the device**
278
279 [[image:1675144099263-405.png]]
280
281
282 (% style="color:blue" %)**Add APP EUI and DEV EUI**
283
284 [[image:1675144117571-832.png]]
285
286
287 (% style="color:blue" %)**Add APP EUI in the application**
288
289
290 [[image:1675144143021-195.png]]
291
292
293 (% style="color:blue" %)**Add APP KEY**
294
295 [[image:1675144157838-392.png]]
296
297 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298
299
300 Press the button for 5 seconds to activate the PS-LB.
301
302 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303
304 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
305
306
307 == 2.3 ​Uplink Payload ==
308
309 === 2.3.1 Device Status, FPORT~=5 ===
310
311
312 Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
313
314 Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
315
316
317 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
318 |(% colspan="6" %)**Device Status (FPORT=5)**
319 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
320 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321
322 Example parse in TTNv3
323
324 [[image:1675144504430-490.png]]
325
326
327 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
328
329 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
330
331 (% style="color:#037691" %)**Frequency Band**:
332
333 *0x01: EU868
334
335 *0x02: US915
336
337 *0x03: IN865
338
339 *0x04: AU915
340
341 *0x05: KZ865
342
343 *0x06: RU864
344
345 *0x07: AS923
346
347 *0x08: AS923-1
348
349 *0x09: AS923-2
350
351 *0x0a: AS923-3
352
353 *0x0b: CN470
354
355 *0x0c: EU433
356
357 *0x0d: KR920
358
359 *0x0e: MA869
360
361
362 (% style="color:#037691" %)**Sub-Band**:
363
364 AU915 and US915:value 0x00 ~~ 0x08
365
366 CN470: value 0x0B ~~ 0x0C
367
368 Other Bands: Always 0x00
369
370
371 (% style="color:#037691" %)**Battery Info**:
372
373 Check the battery voltage.
374
375 Ex1: 0x0B45 = 2885mV
376
377 Ex2: 0x0B49 = 2889mV
378
379
380 === 2.3.2 Sensor value, FPORT~=2 ===
381
382
383 Uplink payload includes in total 9 bytes.
384
385
386 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
387 |(% style="width:97px" %)(((
388 **Size(bytes)**
389 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
390 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
391
392 [[image:1675144608950-310.png]]
393
394
395 === ===
396
397
398 === 2.3.3 Battery Info ===
399
400
401 Check the battery voltage for PS-LB.
402
403 Ex1: 0x0B45 = 2885mV
404
405 Ex2: 0x0B49 = 2889mV
406
407
408 === 2.3.4 Probe Model ===
409
410
411 PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
412
413
414 For example.
415
416 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
417 |**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
418 |PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 |PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
420 |PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
421
422
423 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
424
425
426 === 2.3.5 0~~20mA value (IDC_IN) ===
427
428
429 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
430
431 (% style="color:#037691" %)**Example**:
432
433 27AE(H) = 10158 (D)/1000 = 10.158mA.
434
435
436 === 2.3.6 0~~30V value ( pin VDC_IN) ===
437
438
439 Measure the voltage value. The range is 0 to 30V.
440
441 (% style="color:#037691" %)**Example**:
442
443 138E(H) = 5006(D)/1000= 5.006V
444
445
446 === 2.3.7 IN1&IN2&INT pin ===
447
448
449 IN1 and IN2 are used as digital input pins.
450
451 (% style="color:#037691" %)**Example**:
452
453 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
454
455 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
456
457
458 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
459
460 (% style="color:#037691" %)**Example:**
461
462 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
463
464 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
465
466 0x01: Interrupt Uplink Packet.
467
468 === (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
469
470
471 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
472 |(% style="width:94px" %)(((
473 **Size(bytes)**
474 )))|(% style="width:43px" %)2|(% style="width:367px" %)n
475 |(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
476 Voltage value, each 2 bytes is a set of voltage values.
477 )))
478
479 [[image:image-20230220171300-1.png||height="207" width="863"]]
480
481 Multiple sets of data collected are displayed in this form:
482
483 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
484
485
486 === 2.3.9 ​Decode payload in The Things Network ===
487
488
489 While using TTN network, you can add the payload format to decode the payload.
490
491
492 [[image:1675144839454-913.png]]
493
494
495 PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
496
497
498 == 2.4 Uplink Interval ==
499
500
501 The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
502
503
504 == 2.5 Show Data in DataCake IoT Server ==
505
506
507 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
508
509
510 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
511
512 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
513
514
515 [[image:1675144951092-237.png]]
516
517
518 [[image:1675144960452-126.png]]
519
520
521 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
522
523 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
524
525 [[image:1675145004465-869.png]]
526
527
528 [[image:1675145018212-853.png]]
529
530
531
532
533 [[image:1675145029119-717.png]]
534
535
536 (% style="color:blue" %)**Step 5: **(%%)add payload decode
537
538 [[image:1675145051360-659.png]]
539
540
541 [[image:1675145060812-420.png]]
542
543
544 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
545
546
547 [[image:1675145081239-376.png]]
548
549
550 == 2.6 Frequency Plans ==
551
552
553 The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
554
555 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
556
557
558 == 2.7 ​Firmware Change Log ==
559
560
561 **Firmware download link:**
562
563 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
564
565
566 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
567
568
569 Use can configure PS-LB via AT Command or LoRaWAN Downlink.
570
571 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
572 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
573
574 There are two kinds of commands to configure PS-LB, they are:
575
576 * (% style="color:#037691" %)**General Commands**
577
578 These commands are to configure:
579
580 * General system settings like: uplink interval.
581 * LoRaWAN protocol & radio related command.
582
583 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
584
585 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
586
587
588 * (% style="color:#037691" %)**Commands special design for PS-LB**
589
590 These commands only valid for PS-LB, as below:
591
592
593 == 3.1 Set Transmit Interval Time ==
594
595
596 Feature: Change LoRaWAN End Node Transmit Interval.
597
598 (% style="color:blue" %)**AT Command: AT+TDC**
599
600 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
601 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
602 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
603 30000
604 OK
605 the interval is 30000ms = 30s
606 )))
607 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
608 OK
609 Set transmit interval to 60000ms = 60 seconds
610 )))
611
612 (% style="color:blue" %)**Downlink Command: 0x01**
613
614 Format: Command Code (0x01) followed by 3 bytes time value.
615
616 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
617
618 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
619 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
620
621 == 3.2 Set Interrupt Mode ==
622
623
624 Feature, Set Interrupt mode for GPIO_EXIT.
625
626 (% style="color:blue" %)**AT Command: AT+INTMOD**
627
628 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
629 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
630 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
631 0
632 OK
633 the mode is 0 =Disable Interrupt
634 )))
635 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
636 Set Transmit Interval
637 0. (Disable Interrupt),
638 ~1. (Trigger by rising and falling edge)
639 2. (Trigger by falling edge)
640 3. (Trigger by rising edge)
641 )))|(% style="width:157px" %)OK
642
643 (% style="color:blue" %)**Downlink Command: 0x06**
644
645 Format: Command Code (0x06) followed by 3 bytes.
646
647 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
648
649 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
650 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
651
652 == 3.3 Set the output time ==
653
654
655 Feature, Control the output 3V3 , 5V or 12V.
656
657 (% style="color:blue" %)**AT Command: AT+3V3T**
658
659 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
660 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
661 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
662 0
663 OK
664 )))
665 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
666 OK
667 default setting
668 )))
669 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
670 OK
671 )))
672 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
673 OK
674 )))
675
676 (% style="color:blue" %)**AT Command: AT+5VT**
677
678 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
679 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
680 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
681 0
682 OK
683 )))
684 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
685 OK
686 default setting
687 )))
688 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
689 OK
690 )))
691 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
692 OK
693 )))
694
695 (% style="color:blue" %)**AT Command: AT+12VT**
696
697 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
698 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
699 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
700 0
701 OK
702 )))
703 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
704 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
705 OK
706 )))
707
708 (% style="color:blue" %)**Downlink Command: 0x07**
709
710 Format: Command Code (0x07) followed by 3 bytes.
711
712 The first byte is which power, the second and third bytes are the time to turn on.
713
714 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
715 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
716 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
717 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
718 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
719 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
720
721 == 3.4 Set the Probe Model ==
722
723
724 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
725
726 **AT Command: AT** **+PROBE**
727
728 AT+PROBE=aabb
729
730 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
731
732 When aa=01, it is the pressure mode, which converts the current into a pressure value;
733
734 bb represents which type of pressure sensor it is.
735
736 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
737
738 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
739 |**Command Example**|**Function**|**Response**
740 |AT +PROBE =?|Get or Set the probe model.|0
741 OK
742 |AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
743 |(((
744 AT +PROBE =000A
745
746
747 )))|Set water depth sensor mode, 10m type.|OK
748 |AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
749 |AT +PROBE =0000|Initial state, no settings.|OK
750
751
752 **Downlink Command: 0x08**
753
754 Format: Command Code (0x08) followed by 2 bytes.
755
756 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
758
759 == 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
760
761
762 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763
764 (% style="color:blue" %)**AT Command: AT** **+STDC**
765
766 AT+STDC=aa,bb,bb
767
768 (% style="color:#037691" %)**aa:**(%%)
769 **0:** means disable this function and use TDC to send packets.
770 **1:** means enable this function, use the method of multiple acquisitions to send packets.
771 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
772 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
773
774 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
775 |**Command Example**|**Function**|**Response**
776 |AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
777 OK
778 |AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
779 Attention:Take effect after ATZ
780
781 OK
782 )))
783 |AT+STDC=0, 0,0|(((
784 Use the TDC interval to send packets.(default)
785
786
787 )))|(((
788 Attention:Take effect after ATZ
789
790 OK
791 )))
792
793
794 (% style="color:blue" %)**Downlink Command: 0xAE**
795
796 Format: Command Code (0x08) followed by 5 bytes.
797
798 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
799
800 = 4. Battery & how to replace =
801
802 == 4.1 Battery Type ==
803
804
805 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
806
807 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
808
809 [[image:1675146710956-626.png]]
810
811
812 Minimum Working Voltage for the PS-LB:
813
814 PS-LB:  2.45v ~~ 3.6v
815
816
817 == 4.2 Replace Battery ==
818
819
820 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
821
822 And make sure the positive and negative pins match.
823
824
825 == 4.3 Power Consumption Analyze ==
826
827
828 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
829
830 Instruction to use as below:
831
832 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
833
834 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
835
836 * Product Model
837 * Uplink Interval
838 * Working Mode
839
840 And the Life expectation in difference case will be shown on the right.
841
842 [[image:1675146895108-304.png]]
843
844
845 The battery related documents as below:
846
847 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
848 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
849 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
850
851 [[image:image-20230131145708-3.png]]
852
853
854 === 4.3.1 ​Battery Note ===
855
856
857 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
858
859
860 === 4.3.2 Replace the battery ===
861
862
863 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
864
865 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
866
867
868 = 5. Remote Configure device =
869
870 == 5.1 Connect via BLE ==
871
872
873 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
874
875
876 == 5.2 AT Command Set ==
877
878
879
880 = 6. OTA firmware update =
881
882
883 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
884
885
886 = 7. FAQ =
887
888 == 7.1 How to use AT Command to access device? ==
889
890
891 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
892
893
894 == 7.2 How to update firmware via UART port? ==
895
896
897 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
898
899
900 == 7.3 How to change the LoRa Frequency Bands/Region? ==
901
902
903 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
904 When downloading the images, choose the required image file for download. ​
905
906
907 = 8. Order Info =
908
909
910 [[image:image-20230131153105-4.png]]
911
912
913 = 9. ​Packing Info =
914
915
916 (% style="color:#037691" %)**Package Includes**:
917
918 * PS-LB LoRaWAN Pressure Sensor
919
920 (% style="color:#037691" %)**Dimension and weight**:
921
922 * Device Size: cm
923 * Device Weight: g
924 * Package Size / pcs : cm
925 * Weight / pcs : g
926
927 = 10. Support =
928
929
930 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
931
932 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
933
934
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0